Computer Vision for Embedded Systems

Yung-Hsiang Lu Purdue University yunglu@purdue.edu

Fooling Neural Networks

Fooling automated surveillance cameras: adversarial patches to attack person detection

https://arxiv.org/pdf/1904.08653.pdf https://www.youtube.com/watch?v=MIbFvK2S9g8&ab_channel=AnonymousCVCOPS

Yung-Hsiang Lu, Purdue University

Generative Adversarial Networks GAN

Communication of the ACM, November 2020 IEEE Signal Processing Magazine, January 2018 NIPS 2016 Tutorial: Generative Adversarial Networks

Why Generative Models?

- supervised learning
 - goals are well-defined: map inputs to correct outputs
 - need data + answers
 - need human supervision
 - answers need to be generated by humans
- unsupervised learning
 - to find "patterns" but what is a pattern?
 - goals not clearly defined
 - clustering and dimension reduction are common
- Generative models: Generate data with specific properties

Supervised Learning vs Generative Model

Generative Model based on Data

Progression of GAN

Figure 18: Samples of images of bedrooms generated by a DCGAN trained on the LSUN dataset.

Advantages of Generative Models

- Test the generality of the trained machine models
- Conduct reinforcement learning with data, without model
- Enhance supervised learning with data without labels
- Improve data quality (from low resolution to high)
- Create artwork
- Translate images

Yung-Hsiang Lu, Purdue University

Taxonomy of Generative Models

Advantage of GAN over other generative models

- GAN can generate data in parallel
- fewer restrictions
- No need of Markov chains
- Use game theory for strategies

DCGAN (deep convolution GAN)

Research Questions

- convergence: no theory about the conditions
- mode collapse
- systematic evaluation
- discrete outputs

Consistency vs. Accuracy

IEEE Multimedia (to appear)

Caleb Tung Purdue Doctoral Student (2022)

Consistency

Mask-RCNN

green: detected red: missed

Faster RCNN

Yung-Hsiang Lu, Purdue University

RetinaNet

Single Shot Detector

Yung-Hsiang Lu, Purdue University

Consistency vs Accuracy

Define Consistency

 $-|M_{i,j}|$ $|M_{ji}|$ G_i G_i ground truth of image i object detected in image i, missed in image j consistency of images i and j Yung-Hsiang Lu, Purdue University

Example

Green box: detected

 $G_i \cap G_j = \{A, B\}$ $M_{i,j} = \{B\}$ $M_{j,i} = \{\}$

$$C_{i,j} = \frac{2-1}{2} = 0.5$$

image i: A and B detected, C missed

image j: A and D detected, B missed

Do you agree with this definition?

Consistency of Popular Object Detectors MOT (Multiple Object Tracking) Dataset

Methods to Improve Consistency

GD: Gaussian Denoise; HF: Horizontal FlipWC: WEBP compression (for websites)UM: Unsharp mask (to remove motion blur)GC: Gamma correction (enhance contrast)

	Faster- RCNN	Mask- RCNN	RetinaNet	SSD	Faster- RCNN	Mask- RCNN	RetinaNet	SSD
GD	0%	-0.3%	0%	-0.6%	2.1%	2.4%	-0.6%	-1.1%
HF	-5.3%	-5.4%	-7.3%	-10.1%	-19.3%	-19.4%	-25.5%	-28.4%
WC	0.6%	0.5%	0.7%	0.4%	1.5%	1.8%	0.5%	0.5%
UM	3.6%	2.6%	3.0%	1.1%	2.0%	3.2%	8.3%	3.6%
WC+UM	5.1%	3.0%	3.2%	1.3%	3.2%	4.1%	8.6%	3.9%
GC	0.1%	0.1%	0.4%	0.1%	0.1%	-0.5%	-0.7%	-0.1%

improvement in consistency

improvement in accuracy

Irrelevant Pixels are Everywhere: Find and Exclude Them for More Efficient Computer Vision

Artificial Intelligence Circuits and Systems 2022

All pixels at Depth Level > thresh are marked as Relevant. Others are Irrelevant.

> Verify RELEVANT pixels contain ground truth to ensure no data is missed

		MOT2015		COCO		PASCAL VOC	
		ED	SL	ED	SL	ED	SL
Number	of Mult-Ad	d Operati	ons (M/ii	ference)			
	Normal	384.5	483.6	384.5	483.6	384.5	483.6
	Focused	196.1	246.8	211.4	266.0	223.0	280.4
Inferenc	e Latency (s	s/inferenc	e)			12	
RPi (5W)	Normal	2.10	2.26	2.00	2.33	2.06	2.29
	Focused	1.11	1.30	1.33	1.51	1.47	1.56
Intel (28W)	Normal	0.25	0.28	0.25	0.29	0.25	0.28
	MKL	0.18	0.19	0.18	0.20	0.18	0.20
	Focused	0.17	0.18	0.18	0.20	0.19	0.20
Energy	Consumption	n (J/infer	ence)	25 E		ń	
RPi (5W)	Normal	10.22	11.80	10.15	11.81	10.20	10.90
	Focused	5.60	6.11	6.71	7.50	7.44	7.80
Intel (28W)	Normal	6.61	7.39	6.45	7.42	6.69	7.81
	MKL	5.18	5.09	5.09	5.61	5.23	5.60
	Focused	4.76	5.04	5.10	5.60	5.29	5.62

Directed Acyclic Graph-based Neural Networks for Tunable Low-Power Computer Vision

International Symposium on Low Power Electronics and Design 2022 (ISLPED)

Abhinav Goel Purdue PhD 2022 now at Nvidia

What is the problem?

In a tree structure, there is only one path from the root to any leaf. If a mistake is made, there is no way to correct the mistake.

Solution: Directed Acyclic Graph-based (DAG)

Add paths to correct mistakes Questions: which paths to add? how much will the memory requirements increase?

Trade-Off

- adding none or too few ⇒ low accuracy
- adding too many ⇒ becomes a large and deep CNN (larger memory requirements)

Add only the most impactful paths

Yung-Hsiang Lu, Purdue University

Dataset	Technique	Accuracy (%)	Model Size (MB)	FLOPs (×10 ⁶)
	HDNN [5]	91.20	0.25	2.13
	DAG-Net 1	91.30	0.27	2.14
	DAG-Net 2	91.70	0.28	2.17
EMNIST	DAG-Net 3	92.00	0.29	2.79
	DAG-Net 4	92.14	0.32	3.21
	DAG-Net 5	92.15	0.37	3.45
	VGG-5 [19]	92.59	15.00	161.24
	ResNet9 [2]	92.00	26.00	636.71

		Rasph	perry	NVIDIA Jetson		
Detect	Tachniqua	Pi	4B	Nano		
Dataset	Technique	Latency	Energy	Latency	Energy	
	HDNN	0.053	0.28	0.320	2.46	
	DAG-Net 1	0.057	0.30	0.320	2.47	
EMNIST	DAG-Net 3	0.062	0.32	0.322	2.49	
	DAG-Net 5	0.066	0.35	0.322	2.49	
	VGG-5	0.431	2.27	4.041	31.15	