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Fooling Neural Networks

Fooling automated surveillance cameras: adversarial

patches to attack person detection

https://arxiv.org/pdf/1904.08653.pdf
https://www.youtube.com/watch?v=MIbFvK2S9g8&ab_channel=AnonymousCVCOPS
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Generative Adversarial Networks
GAN

Communication of the ACM, November 2020
IEEE Signal Processing Magazine, January 2018
NIPS 2016 Tutorial: Generative Adversarial Networks
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Why Generative Models?

= supervised learning
« goals are well-defined: map inputs to correct outputs
* need data + answers
 need human supervision
* answers need to be generated by humans
= unsupervised learning
 to find "patterns” but what is a pattern?
« goals not clearly defined
 clustering and dimension reduction are common
= Generative models: Generate data with specific
properties

Yung-Hsiang Lu, Purdue University



Supervised Learning vs Generative Model
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Generative Model based on Data

perturbation
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input (images): x |= generator
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Progression of GAN
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Figure 18: Samples of images of bedrooms generated by a DOCGAN trained on the
LSUN dataset,
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Advantages of Generative Models

Test the generality of the trained machine models
Conduct reinforcement learning with data, without model
Enhance supervised learning with data without labels
Improve data quality (from low resolution to high)

Create artwork B T <02
Translate images

Yung-Hsiang Lu, Purdue University



Taxonomy of Generative Models
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Advantage of GAN over other generative models

GAN can generate data in parallel
fewer restrictions

No need of Markov chains

Use game theory for strategies

Yung-Hsiang Lu, Purdue University
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DCGAN (deep convolution GAN)
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Research Questions

convergence: no theory about the conditions
mode collapse

systematic evaluation S
discrete outputs

16
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Consistency vs. Accuracy

IEEE Multimedia (to appear)

Caleb Tung e
Purdue Doctoral Student (2022) ‘
Yung-Hsiang Lu , Purdue University 17




Mask-RCNN

green: detected
red: missed

Yung-Hsiang Lu, Purdue University



Faster RCNN

Yung-Hsiang Lu, Purdue University



RetinaNet
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Single Shot Detector

Yung-Hsiang Lu, Purdue University



Consistency vs Accuracy

50% accuracy, consistent

=% S ..'-' |.'

50% accuracy, inconsistent
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Define Consistency
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ground truth of image i object detected in image i,
missed in image j

Yung-Hsiang Lu, Purdue University

consistency of images i and |
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Green box: detected

G, ﬂGj = {A,B}

image i: A and B detected, C missed

M;,i = {}

| A B q
' 2=l - .
Cij; = 5 = (.0 ¢

image j: A and D detected, B missed

Do you agree with this definition?

Yung-Hsiang Lu, Purdue University



Consistency (%)
O
o
|
1
|

85 -
80
W W oM B W M N Y M R &
1 Faster-RCNN £ Mask-RCNN RetinaNet m SSD .

Yung-Hsiang Lu, Purdue Universit

<



Methods to Improve Consistency

GD: Gaussian Denoise; HF: Horizontal Flip
WC: WEBP compression (for websites)
UM: Unsharp mask (to remove motion blur)

GC:. Gamma correction (enhance contrast)

E{‘:’; ;l(ll\\l\f\ RetinaNet | SSD E‘g;\‘]; z'(‘“\'l‘\] RetinaNet | SSD
GD 0% 03% | 0% -0.6% 2.1% 2.4% -0.6% -1.1%
HF -5.3% -5.4% -7.3% ' -10.1% | -19.3% | -19.4% | -25.5% -28.4%
WC 06% | 05% | 07% T 0.4% 1.5% 1.8% | 0.5% 0.5%
UM 36% | 26% | 3.0% 11% | 20% | 32% | 8.3% | 3.6%
WC+UM | 51% | 3.0% 32% 1.3% | 32% | 41% | 8.6% 1739%
GC 0.1% 0.1% 0.4% 0.1% 0.1% 05% | -0.7% 0.1% |

Improvement in consistency

Improvement in accuracy

Yung-Hsiang Lu, Puraue university



Irrelevant Pixels are Everywhere: Find
and Exclude Them for More Efficient
Computer Vision

Artificial Intelligence Circuits and Systems 2022

Yung-Hsiang Lu, Purdue University



RELEVANT
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PASCALVOC mm MOT Challenge mm COCO
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Depth
epth map ‘Thresh W) RRELEVANT

olded
mask

All pixels at Depth Level > thresh
are marked as Relevant. Others
are Ilrrelevant

Verify RELEVANT pixels
contain ground truth to
ensure no data is missed

RELEVANT

Pixelwise mask

Ground truth

Yung-Hsiang Lu, Purdue University
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MOT2015 CoCoO PASCAL VOC
ED SL ED SL ED SL
Number of Mult-Add Operations (M/inference)
Normal | 384.5 | 483.6 | 384.5 | 483.6 | 384.5 | 483.6
Focused | 196.1 | 246.8 | 211.4 | 266.0 | 223.0 | 280.4
Inference Latency (s/inference)

RPi  Normal 2.10 2.26 2.00 2.33 2.06 2.29
(5W)  Focused 1.11 1.30 1.33 1.51 1.47 1.56
Fiigal Normal 0.25 (.28 0.25 0.29 0.25 0.28

(28W) - MKL 0.18 0.19 0.18 0.20 0.18 0.20
Focused 0.17 0.18 0.18 0.20 0.19 0.20
Energy Consumption (J/inference)

RPi  Normal 10.22 | 11.80 | 10.15 | 11.81 | 10.20 [ 10.90
(5W) Focused | 5.60 | 611 [ 671 | 750 | 744 | 7.80
Frital Normal 6.61 7.39 6.45 7.42 6.69 7.81

(28W) MKL 5.18 5.09 5.09 5.61 D23 5.60
~Focused | 476 | 5.04 | 510 | 5.60 | 529 | 5.62

Yung-Hsiang Lu, Purdue University
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Directed Acyclic Graph-based Neural
Networks for Tunable Low-Power
Computer Vision

International Symposium on Low Power
Electronics and Design 2022 (ISLPED)

Abhinav Goel
Purdue PhD 2022
now at Nvidia
Yung-Hsiang Lu, Purdue University .1 ‘ *



What is the problem?

In a tree structure, there is only one path from the root to any
leaf. If a mistake is made, there is no way to correct the
mistake. A
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Solution: Directed Acyclic Graph-based (DAG)

Add paths to correct mistakes
Questions: which paths to add? how much will the memory

requirements increase?
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Trade-Off

= adding none or too few = low accuracy
= adding too many = becomes a large and deep CNN
(larger memory requirements)
Add only the most impactful paths

Yung-Hsiang Lu, Purdue University
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Dataset i Accuracy  Model  FLOPs
(%) Size (MB)  (x10°)

HDNN [5] 91.20 0.25 2.13

DAG-Net 1 91.30 0.27 2.14

DAG-Net 2 91.70 0.28 2.17

EMNIST DAG-Net 3 92.00 0.29 2.9
DAG-Net 4 92.14 0.32 3.21

DAG-Net 5 92.15 0.37 3.45

VGG-5 [19] 92.59 15.00 161.24

ResNet9 [2] 92.00 26.00 636.71

Yung-Hsiang Lu, Purdue University
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Raspberry NVIDIA Jetson
: P14B Nano
Dataset.  Technique Latency Energy Latency Energy
HDNN 0.053 0.28 0.320 2.46
DAG-Net 1 0.057 0.30 0.320 2.47
EMNIST DAG-Net 3 0.062 0.32 0.322 2.49
DAG-Net 5 0.066 0.35 0.322 2.49
VGG-5 0.431 2.27 4.041 31.15

Yung-Hsiang Lu, Purdue University
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