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Fooling Neural Networks
Fooling automated surveillance cameras: adversarial 

patches to attack person detection
https://arxiv.org/pdf/1904.08653.pdf

https://www.youtube.com/watch?v=MIbFvK2S9g8&ab_channel=AnonymousCVCOPS
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Generative Adversarial Networks
GAN

Communication of the ACM, November 2020
IEEE Signal Processing Magazine, January 2018

NIPS 2016 Tutorial: Generative Adversarial Networks
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Why Generative Models?
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▪ supervised learning
• goals are well-defined: map inputs to correct outputs
• need data + answers 
• need human supervision
• answers need to be generated by humans

▪ unsupervised learning
• to find "patterns" but what is a pattern?
• goals not clearly defined
• clustering and dimension reduction are common

▪ Generative models: Generate data with specific 
properties
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Supervised Learning vs Generative Model
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input (images) machine model answer truth
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Generative Model based on Data
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input (images): x generator

perturbation

generated data: x'

discriminator

real or generated?
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Progression of GAN
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Advantages of Generative Models
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● Test the generality of the trained machine models
● Conduct reinforcement learning with data, without model
● Enhance supervised learning with data without labels
● Improve data quality (from low resolution to high)
● Create artwork
● Translate images
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Taxonomy of Generative Models
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ICA = Independent Component Analysis
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Advantage of GAN over other generative models

● GAN can generate data in parallel
● fewer restrictions
● No need of Markov chains
● Use game theory for strategies 
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DCGAN (deep convolution GAN)
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Research Questions

● convergence: no theory about the conditions
● mode collapse
● systematic evaluation
● discrete outputs
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Consistency vs. Accuracy

IEEE Multimedia (to appear)
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Caleb Tung
Purdue Doctoral Student (2022)
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Consistency

Mask-RCNN

green: detected
red: missed
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Faster RCNN
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RetinaNet
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Single Shot Detector
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Consistency vs Accuracy

50% accuracy, consistent

50% accuracy, inconsistent
22
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Define Consistency

23consistency of images i and j
ground truth of image i object detected in image i, 

missed in image j
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Example

Green box: detected

Do you agree with this definition? 24

image i: A and B detected, C missed

image j: A and D detected, B missed
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Consistency of Popular Object Detectors
MOT (Multiple Object Tracking) Dataset
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Methods to Improve Consistency

GD: Gaussian Denoise; HF: Horizontal Flip
WC: WEBP compression (for websites)
UM: Unsharp mask (to remove motion blur)
GC: Gamma correction (enhance contrast)

26
improvement in consistency improvement in accuracy
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Irrelevant Pixels are Everywhere: Find 
and Exclude Them for More Efficient 

Computer Vision
Artificial Intelligence Circuits and Systems 2022
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Directed Acyclic Graph-based Neural 
Networks for Tunable Low-Power 

Computer Vision
International Symposium on Low Power 
Electronics and Design 2022 (ISLPED)
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Abhinav Goel
Purdue PhD 2022
now at Nvidia
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What is the problem?

In a tree structure, there is only one path from the root to any 
leaf. If a mistake is made, there is no way to correct the 
mistake.
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Solution: Directed Acyclic Graph-based (DAG)

Add paths to correct mistakes
Questions: which paths to add? how much will the memory 
requirements increase?
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Trade-Off

▪ adding none or too few ⇒ low accuracy
▪ adding too many ⇒ becomes a large and deep CNN 

(larger memory requirements)
Add only the most impactful paths

37



Yung-Hsiang Lu, Purdue University 38



Yung-Hsiang Lu, Purdue University 39



Yung-Hsiang Lu, Purdue University 40

Caltech-256 dataset
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