# Computer Vision for Embedded Systems

Yung-Hsiang Lu Purdue University yunglu@purdue.edu





# Object Detection





https://pjreddie.com/darknet/yolo/ https://viso.ai/deep-learning/yolov3-overview/

## Image Classification vs Object Detection

- Image classification: one dominant object in an image
- Object detection: multiple objects in the same image





## Evaluate Object Detection

- 1. correct type of object
- 2. non maximum suppression
- 3. correct location (IoU ≥ 0.5)





#### Intersection over union (IoU)

$$IoU = \frac{Correct \cap Vision}{Correct \cup Vision}$$

https://www.deviantart.com/imaginationbutterfly/art/Animal-Drawing-601163034 https://www.template.net/design-templates/drawings/animal-drawings/





vision output



$$IoU = \frac{Correct \cap Vision}{Correct \cup Vision}$$

#### Repurpose Image Classifiers

Apply image classifier at different locations and sizes

 Post-processing: refine bounding boxes, eliminate duplicates, rescore boxes based on other detected

objects

⇒ very slow



Non-Max Suppression



https://www.kaggle.com/arunmohan003/yolo-v3-pytorch-tutorial

# You Look Only Once (YOLO)

# You Only Look Once: Unified, Real-Time Object Detection 2016 (25,000+ citations)

- 45 frames per second (FPS), faster version 155 FPS
- double mAP from earlier fast detectors
- Use 448 x 448 pixels to detect smaller objects
- See the entire images during training ⇒ implicitly include context information
- Testing using natural and artificial images



#### References

- https://www.cv-foundation.org/openaccess/content\_cvpr\_2016/papers/Redmon\_You\_Only\_Look\_C VPR\_2016\_paper.pdf
- 2. https://towardsdatascience.com/yolo2-walkthrough-with-examples-e40452ca265f
- 3. https://www.kaggle.com/arunmohan003/yolo-v3-pytorch-tutorial
- 4. https://pjreddie.com/darknet/yolo/

#### Grid and bounding boxes





#### Training

- pretrain first 20 layers for a week
- 88% top-5 accuracy of ImageNet 2012 classification
- convert classification to detection
- add four convolutional and two fully connected layers
- final layer both class probabilities and bounding box
- Leaky ReLU activation
- Learning rate 10<sup>-2</sup> to 10<sup>-3</sup> to 10<sup>-4</sup>
- Dropout 0.5

#### Limitations

- assumption: each grid cell has only one class of object
- unable to detect small objects in groups
- expect aspect ratios
- downsampling
- treat errors in small bounding boxes the same as large boxes

#### Comparison

- Deformable parts models: disjoint pipeline to extract features, classify regions, predict bounding boxes
- R-CNN: regional proposals, SVM scores bounding boxes, non maximum suppression, 40 seconds / image
- YOLO makes assumption about objects to improve speed, check only 98 bounding boxes / image

| Real-Time Detectors     | Train             | mAP  | <b>FPS</b> |
|-------------------------|-------------------|------|------------|
| 100Hz DPM [30]          | 2007              | 16.0 | 100        |
| 30Hz DPM [30]           | 2007              | 26.1 | 30         |
| Fast YOLO               | 2007+2012         | 52.7 | 155        |
| YOLO                    | 2007+2012         | 63.4 | 45         |
| Less Than Real-Time     |                   |      | 100        |
| Fastest DPM [37]        | 2007              | 30.4 | 15         |
| R-CNN Minus R [20]      | 2007              | 53.5 | 6          |
| Fast R-CNN [14]         | 2007+2012         | 70.0 | 0.5        |
| Faster R-CNN VGG-16[27] | 2007+2012         | 73.2 | 7          |
| Faster R-CNN ZF [27]    | 2007+2012         | 62.1 | 18         |
| YOLO VGG-16             | 2007+2012         | 66.4 | 21         |
| Yung-Hsiang Lu,         | Purdue University |      |            |

## Fast R-CNN

#### YOLO



| VOC 2012 test         | mAP  | aero | bike   | bird       | boat      | bottle    | bus  | car  | cat  | chair | cow  | table |
|-----------------------|------|------|--------|------------|-----------|-----------|------|------|------|-------|------|-------|
| MR_CNN_MORE_DATA [11] | 73.9 | 85.5 | 82.9   | 76.6       | 57.8      | 62.7      | 79.4 | 77.2 | 86.6 | 55.0  | 79.1 | 62.2  |
| HyperNet_VGG          | 71.4 | 84.2 | 78.5   | 73.6       | 55.6      | 53.7      | 78.7 | 79.8 | 87.7 | 49.6  | 74.9 | 52.1  |
| HyperNet_SP           | 71.3 | 84.1 | 78.3   | 73.3       | 55.5      | 53.6      | 78.6 | 79.6 | 87.5 | 49.5  | 74.9 | 52.1  |
| Fast R-CNN + YOLO     | 70.7 | 83.4 | 78.5   | 73.5       | 55.8      | 43.4      | 79.1 | 73.1 | 89.4 | 49.4  | 75.5 | 57.0  |
| MR_CNN_S_CNN[11]      | 70.7 | 85.0 | 79.6   | 71.5       | 55.3      | 57.7      | 76.0 | 73.9 | 84.6 | 50.5  | 74.3 | 61.7  |
| Faster R-CNN [27]     | 70.4 | 84.9 | 79.8   | 74.3       | 53.9      | 49.8      | 77.5 | 75.9 | 88.5 | 45.6  | 77.1 | 55.3  |
| DEEP_ENS_COCO         | 70.1 | 84.0 | 79.4   | 71.6       | 51.9      | 51.1      | 74.1 | 72.1 | 88.6 | 48.3  | 73.4 | 57.8  |
| NoC [28]              | 68.8 | 82.8 | 79.0   | 71.6       | 52.3      | 53.7      | 74.1 | 69.0 | 84.9 | 46.9  | 74.3 | 53.1  |
| Fast R-CNN [14]       | 68.4 | 82.3 | 78.4   | 70.8       | 52.3      | 38.7      | 77.8 | 71.6 | 89.3 | 44.2  | 73.0 | 55.0  |
| UMICH_FGS_STRUCT      | 66.4 | 82.9 | 76.1   | 64.1       | 44.6      | 49.4      | 70.3 | 71.2 | 84.6 | 42.7  | 68.6 | 55.8  |
| NUS_NIN_C2000 [7]     | 63.8 | 80.2 | 73.8   | 61.9       | 43.7      | 43.0      | 70.3 | 67.6 | 80.7 | 41.9  | 69.7 | 51.7  |
| BabyLearning [7]      | 63.2 | 78.0 | 74.2   | 61.3       | 45.7      | 42.7      | 68.2 | 66.8 | 80.2 | 40.6  | 70.0 | 49.8  |
| NUS_NIN               | 62.4 | 77.9 | 73.1   | 62.6       | 39.5      | 43.3      | 69.1 | 66.4 | 78.9 | 39.1  | 68.1 | 50.0  |
| R-CNN VGG BB [13]     | 62.4 | 79.6 | 72.7   | 61.9       | 41.2      | 41.9      | 65.9 | 66.4 | 84.6 | 38.5  | 67.2 | 46.7  |
| R-CNN VGG [13]        | 59.2 | 76.8 | 70.9   | 56.6       | 37.5      | 36.9      | 62.9 | 63.6 | 81.1 | 35.7  | 64.3 | 43.9  |
| YOLO                  | 57.9 | 77.0 | 67.2   | 57.7       | 38.3      | 22.7      | 68.3 | 55.9 | 81.4 | 36.2  | 60.8 | 48.5  |
| Feature Edit [32]     | 56.3 | 74.6 | 69.1   | 54.4       | 39.1      | 33.1      | 65.2 | 62.7 | 69.7 | 30.8  | 56.0 | 44.6  |
| R-CNN BB [13]         | 53.3 | 71.8 | 65.8   | 52.0       | 34.1      | 32.6      | 59.6 | 60.0 | 69.8 | 27.6  | 52.0 | 41.7  |
| SDS [16]              | 50.7 | 69.7 | 58.4   | 48.5       | 28.3      | 28.8      | 61.3 | 57.5 | 70.8 | 24.1  | 50.7 | 35.9  |
| R-CNN [13]            | 49.6 | 68.1 | 63.8   | 46.1       | 29.4      | 27.9      | 56.6 | 57.0 | 65.9 | 26.5  | 48.7 | 39.5  |
|                       |      |      | Yung-H | Isiang Lu, | Purdue Ur | niversity |      |      |      |       |      | 17    |



















# **Tracking Objects (in Video)**

# Tracking Problem



https://www.dreamstime.com/photos-images/white-horse-run-green-grass.html

Yung-Hsiang Lu, Purdue University

#### Types of tracking problem

- moving camera?
- single or multiple cameras?
- single or multiple objects?
- major objects or all objects?
- similar or distinct objects?
- occlusion?
- crossing?
- online or offline?
- initial object marking?



#### Moving Camera







https://www.pexels.com/photo/person-holding-silver-iphone-6-93765/ https://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/dashcams.htm https://www.phase1vision.com/blog/what-is-a-ptz-camera-and-what-is-it-used-for https://www.adorama.com/alc/what-are-the-best-drones-with-4k-cameras/

#### Single or Multiple Objects?









https://www.pexels.com/photo/bird-on-tree-branch-1461867/ https://www.dkfindout.com/us/animals-and-nature/fish/school-fish/ https://bustingbrackets.com/2020/05/27/purdue-basketball-review-2020-21-depth-chart-season-outlook/ https://www.pexels.com/photo/boat-in-the-middle-of-the-ocean-638453/

## Occlusion and Crossing



https://www.researchgate.net/figure/Object-Tracking-during-and-after-Occlusion\_fig5\_220166473 https://kimwilbanks.com/2019/01/12/is-your-name-on-the-column/

#### Problem of switched IDs







# Deep learning in video multi-object tracking: A survey

Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano, Roberto Tagliaferri, Francisco Herrer Neurocomputing 381 (2020) 61–88



#### **Metrics**

- object detection: intersection over union (common)
- # frames an object of interest is correctly tracked
- # ID switches
- fragmentation: interruptions in tracking

$$score = 1 - \frac{FP + FP + IDSW}{GT}$$

#### **Datasets**



## **MOT 15**

| Sample | Name             | FRS | Resolution | Length         | Tracks | Boxes | Density | Description                                           |
|--------|------------------|-----|------------|----------------|--------|-------|---------|-------------------------------------------------------|
|        | Venice-2         | 30  | 1920x1080  | 600<br>(00:20) | 26     | 7141  | 11.9    | People walking around a large square.                 |
|        | KITTI-17         | 10  | 1224x370   | 145<br>(00:15) | 9      | 683   | 4.7     | Walking pedestrians on a sunny day, static camera     |
|        | KITTI-13         | 10  | 1242x375   | 340<br>(00:34) | 42     | 762   | 2.2     | Busy urban environment filmed from a moving car       |
|        | ADL-Rundle-<br>8 | 30  | 1920x1080  | 654<br>(00:22) | 28     | 6783  | 10.4    | A pedestrian scene filmed at night by a moving camera |
|        | ADL-Rundle-      | 30  | 1920x1080  | 525<br>(00:18) | 24     | 5009  | 9.5     | A pedestrian street scene filmed from a low angle.    |
| M TO   |                  |     | 100        |                |        |       |         |                                                       |



Yung-Hsiang Lu, Purdue University

## MOT20

#### more people each frame





## 2021 Low-Power Computer Vision Challenge









#### Feed-Forward vs. Recurrent Networks







https://colah.github.io/posts/2015-08-Understanding-LSTMs/



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$



$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
  
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$



42

## Occlusion and Tracking













### Improving Tracking

- Improve detection and neural networks for feature extraction
- Mitigate errors
- Track different types of objects
- Evaluate robustness

## **Preview: Transformers**

# "Camera Placement Meeting Restrictions Of Computer Vision", IEEE International Conference on Image Processing 2020

Sara Aghajanzadeh 2020 MSECE Purdue (2022) doctoral student at U Illinois 3

### Art Gallery Problem

Where to locate guards so that every place in the gallery can be observed by at least one guard.

The guards cannot see through walls.

Assumption: each guard can see infinitely far.



https://en.wikipedia.org/wiki/Art\_gallery\_problem

#### Camera's Field of View



#### Art Gallery Problem with Limited Distance

If a guard has limited viewing distance, the problem is more complex.

The regions marked by black arrows are no longer visible by any guard.



## Partition Polygons for Cameras

