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Object Detection

https://pjreddie.com/darknet/yolo/
https://viso.ai/deep-learning/yolov3-overview/
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Image Classification vs Object Detection
▪ Image classification: one dominant object in an image
▪ Object detection: multiple objects in the same image
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Evaluate Object Detection
1. correct type of object
2. non maximum suppression
3. correct location (IoU ≥ 0.5)

https://www.deviantart.com/imaginationbutterfly/art/Animal-Drawing-601163034
https://www.template.net/design-templates/drawings/animal-drawings/

correct

vision output

Intersection over union (IoU)
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correct

vision output
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Repurpose Image Classifiers
▪ Apply image classifier at different locations and sizes
▪ Post-processing: refine bounding boxes, eliminate 

duplicates, rescore boxes based on other detected 
objects

⇒ very slow

https://www.kaggle.com/arunmohan003/yolo-v3-pytorch-tutorial
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You Look Only Once (YOLO)

7



Yung-Hsiang Lu, Purdue University

You Only Look Once: Unified, Real-Time Object 
Detection 2016 (25,000+ citations)
▪ 45 frames per second (FPS), faster version 155 FPS
▪ double mAP from earlier fast detectors
▪ Use 448 x 448 pixels to detect smaller objects
▪ See the entire images during training ⇒ implicitly include 

context information 
▪ Testing using natural and artificial images
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References
1. https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_C

VPR_2016_paper.pdf
2. https://towardsdatascience.com/yolo2-walkthrough-with-examples-e40452ca265f
3. https://www.kaggle.com/arunmohan003/yolo-v3-pytorch-tutorial
4. https://pjreddie.com/darknet/yolo/
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Grid and bounding boxes
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Training
▪ pretrain first 20 layers for a week
▪ 88% top-5 accuracy of ImageNet 2012 classification
▪ convert classification to detection
▪ add four convolutional and two fully connected layers
▪ final layer both class probabilities and bounding box
▪ Leaky ReLU activation
▪ Learning rate 10-2 to 10-3 to 10-4

▪ Dropout 0.5
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Limitations
▪ assumption: each grid cell has only one class of object
▪ unable to detect small objects in groups
▪ expect aspect ratios
▪ downsampling
▪ treat errors in small bounding boxes the same as large 

boxes
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Comparison
▪ Deformable parts models: disjoint pipeline to extract 

features, classify regions, predict bounding boxes
▪ R-CNN: regional proposals, SVM scores bounding boxes, 

non maximum suppression, 40 seconds / image
▪ YOLO makes assumption about objects to improve 

speed, check only 98 bounding boxes / image
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Tracking Objects (in Video)
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Tracking Problem
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Types of tracking problem
▪ moving camera?
▪ single or multiple cameras?
▪ single or multiple objects?
▪ major objects or all objects?
▪ similar or distinct objects?
▪ occlusion?
▪ crossing?
▪ online or offline?
▪ initial object marking?

https://www.wlfi.com/content/news/Purdue-women-accept-WNIT-bid-will-face-IUPUI-476706723.html
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Moving Camera

https://www.pexels.com/photo/person-holding-silver-iphone-6-93765/
https://auto.howstuffworks.com/car-driving-safety/safety-regulatory-devices/dashcams.htm
https://www.phase1vision.com/blog/what-is-a-ptz-camera-and-what-is-it-used-for
https://www.adorama.com/alc/what-are-the-best-drones-with-4k-cameras/
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Single or Multiple Objects?

https://www.pexels.com/photo/bird-on-tree-branch-1461867/
https://www.dkfindout.com/us/animals-and-nature/fish/school-fish/
https://bustingbrackets.com/2020/05/27/purdue-basketball-review-2020-21-depth-chart-season-outlook/
https://www.pexels.com/photo/boat-in-the-middle-of-the-ocean-638453/
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Occlusion and Crossing

https://www.researchgate.net/figure/Object-Tracking-during-and-after-Occlusion_fig5_220166473
https://kimwilbanks.com/2019/01/12/is-your-name-on-the-column/
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Problem of switched IDs
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Deep learning in video multi-object tracking: 
A survey

Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik , 
Luigi Troiano, Roberto Tagliaferri, Francisco Herrer

Neurocomputing 381 (2020) 61–88

26



Yung-Hsiang Lu, Purdue University 27



Yung-Hsiang Lu, Purdue University

Metrics
▪ object detection: intersection over union (common)
▪ # frames an object of interest is correctly tracked
▪ # ID switches
▪ fragmentation: interruptions in tracking
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Datasets

29



Yung-Hsiang Lu, Purdue University

MOT 15
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MOT20
more people each frame
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2021 Low-Power Computer Vision Challenge
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Deep learning in video multi-object tracking: A survey
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Feed-Forward vs. Recurrent Networks 

input output

input output
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Long Short Term Memory (LSTM)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Occlusion and Tracking
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Improving Tracking
▪ Improve detection and neural networks for feature 

extraction
▪ Mitigate errors
▪ Track different types of objects
▪ Evaluate robustness
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Preview: Transformers
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“Camera Placement Meeting Restrictions Of 
Computer Vision”, IEEE International 
Conference on Image Processing 2020
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Art Gallery Problem
Where to locate guards so that 
every place in the gallery can be 
observed by at least one guard.

The guards cannot see through 
walls.

Assumption: each guard can see 
infinitely far.
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Camera's Field of View

https://www.researchgate.net/figure/Illustration-of-camera-lenss-field-of-view-FOV_fig4_335011596

An farther object appears smaller
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Art Gallery Problem with Limited Distance
If a guard has limited 
viewing distance, the 
problem is more complex. 

The regions marked by 
black arrows are no longer 
visible by any guard.
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Partition Polygons for Cameras
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