Use of Sustainable Hydrogen to Produce Liquid Biofuels

Rakesh Agrawal
Navneet R. Singh
Fabio H. Ribeiro
W. Nicholas Delgass

School of Chemical Engineering
and The Energy Center at Discovery park
Purdue University
West Lafayette, IN 47907

©2007, R. Agrawal
Goal

To provide transportation fuel sustainably
Biomass: Sustainable source of carbon but...

All US corn and soybean can meet only 12% of gasoline and 6% of diesel demand

Source. Hill et.al., PNAS, 103, 2006
Biomass: Sustainable source of carbon but...

All US corn and soybean can meet only 12% of gasoline and 6% of diesel demand

Therefore, one must use lignocellulosic mass to increase oil production.

Source. Hill et.al., PNAS, 103, 2006
Biomass to Synthetic Oil by Conventional Gasification Route

O₂

Biomass → Drier and Gasifier → Syngas → WGS reactor → H₂/CO=2 → H₂-CO to Liquid reactor → H₂O → CO₂

Liquid Hydrocarbon Fuel → 24 HR Diesel

Byproducts

Land area for 13.8 mbbl/d = 25-55% of the total US land area
Total US land area: 3.6 million mi²

©2007, R. Agrawal
Currently Biomass alone can not supply all the liquid fuel for the US transportation sector
For H$_2$- economy to eventually get fully implemented:

- H$_2$ must be economically produced from a carbon-free energy source: Solar, Nuclear etc
- H$_2$ storage challenge must be met
- Fuel cell cost must be reduced
- A hydrogen infrastructure for distribution and dispensing must be built
Solution

Partnership between Biomass and H_2 from Carbon-free energy source
A Novel Biomass and H\textsubscript{2} from Carbon-free energy source partnership

A Hybrid Hydrogen-Carbon (H\textsubscript{2}CARTM) Economy!

Agrawal et.al., PNAS, 104, 2007
H₂CAR™ economy

- Biomass primarily supplier of carbon atoms
- H₂ from a sustainable carbon-free source
- H₂ converts every carbon atom to liquid fuel
- No release of CO₂ during conversion process
- CO₂ release only at end use
- A solution to store H₂ as a high density fuel
- A sustainable open-loop cycle for carbon

Agrawal et.al., PNAS, 104, 2007
A Novel H₂CAR™ Process

Biomass \rightarrow Oxygen \rightarrow Gasifier \rightarrow Syngas \rightarrow Carbon-free Energy source

\rightarrow Syngas \rightarrow H₂-CO Recycle \rightarrow Liquid Hydrocarbon Fuel \rightarrow Byproducts

Unreacted H₂, CO Recycle \rightarrow CO₂ Recycle \rightarrow CO₂

Energy source

H₂ - CO to Liquid reactor \rightarrow H₂O

Agrawal et al., PNAS, 104, 2007
Production of 13.84 million bbl/d of synthetic oil using Biomass

Future Case\(^1\):
Gasifier Efficiency = 70%
Biomass growth rate = 1.5 kg dry mass/m\(^2\)/yr

<table>
<thead>
<tr>
<th>Case</th>
<th>Land area (million (\text{mi}^2))</th>
<th>Required (\text{H}_2) (Billion kg/yr)</th>
<th>Carbon Efficiency (%)</th>
<th>Energy Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biomass</td>
<td>(\text{H}_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>0.98</td>
<td>0</td>
<td>0</td>
<td>36.7</td>
</tr>
<tr>
<td>(\text{H}_2\text{CAR}^\text{TM})</td>
<td>0.36*</td>
<td>0.018*</td>
<td>239</td>
<td>~100</td>
</tr>
</tbody>
</table>

*Needs only 10% of the US land area or half of current cropland area!

Currently available: 700,000 \(\text{mi}^2\) cropland, 900,000 \(\text{mi}^2\) pasture land

\(^1\) NRC \(\text{H}_2\) Report
Billion ton annual biomass study\(^1\)

Estimate of total dry biomass available = 1.366 billion tons/year

<table>
<thead>
<tr>
<th>Case</th>
<th>(H_2) requirement (billion kg/yr)</th>
<th>Oil production as % of 13.8 mbbl/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>-</td>
<td>~30</td>
</tr>
<tr>
<td>(H_2)CAR(^TM)</td>
<td>238</td>
<td>~100</td>
</tr>
</tbody>
</table>

Gasifier Efficiency = 70%

\(^1\) Perlack et. al. The technical feasibility of a billion ton annual supply (2005)
Effect of Biomass growth rate on land area

Gasifier Efficiency = 70%
Total US land area = 9.2 million km²
Energy source for a barrel of oil

Gasifier Efficiency = 70%

<table>
<thead>
<tr>
<th></th>
<th>Biomass (MJ)</th>
<th>Hydrogen (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>8779</td>
<td>-</td>
</tr>
<tr>
<td>(\text{H}_2\text{CAR}^{\text{TM}})</td>
<td>3193</td>
<td>3799</td>
</tr>
</tbody>
</table>

Large amount of \(\text{H}_2 \) can be potentially stored
Effect of PHEVs on land area

Agrawal et al., PNAS, 104, 2007
Why Concept Works?
Problems with current gasification processes

Carbon efficiency of 30-40% results in large land area requirements
How 60-70% carbon is lost in biomass case?

Syngas composition normalized to 100 moles carbon in biomass

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2</td>
<td>47</td>
</tr>
<tr>
<td>CO</td>
<td>47</td>
</tr>
<tr>
<td>CO_2</td>
<td>53</td>
</tr>
<tr>
<td>H_2O</td>
<td>88</td>
</tr>
<tr>
<td>T (°C)</td>
<td>1100-1300</td>
</tr>
<tr>
<td>H_2/CO</td>
<td>1</td>
</tr>
</tbody>
</table>

To obtain $\text{H}_2/\text{CO}=2$, additional 16 CO_2 are lost due to WGSR $\text{CO}+\text{H}_2\text{O}=\text{CO}_2+\text{H}_2$

Additional losses occur in FT reactor
Efficiency for H$_2$ production is at least 10 times greater than that of biomass growth.
H$_2$CAR$^\text{TM}$ Process is Sustainable

Entire US transportation sector can be potentially supported

- With manageable land area
- Much higher carbon efficiency
- Higher energy efficiency

Sustainable addiction to “oil” ?
Advantages of Biomass H₂CAR™

- Crop Diversity (Biodiversity vs Monocultures)
- Tailor biomass to maximize carbon pickup
- Reduction in land area radius to support a plant
- Reduction in biomass storage space
- Reduced energy input
Advantages of Biomass H$_2$CAR™ (contd.)

- Decreased use of fertilizer and pesticides
- Decreased wear and tear to land
- Plausible use of carbonaceous municipal waste
- Synthesis of desired hydrocarbon molecules
- Large H$_2$ storage capacity
- Uses existing fuel infrastructure
Application of H$_2$CAR™ for coal to liquids
A Novel H₂CAR™ Process

Coal → Gasifier

CO₂ Recycle

Syngas

Unreacted H₂, CO Recycle

H₂-CO to Liquid reactor

H₂O

Liquid Hydrocarbon Fuel

Byproducts

Carbon-free Energy source

©2007, R. Agrawal
Production of 13.84 million bbl/d of synthetic oil using coal as carbon source

Gasifier Efficiency = 75%

<table>
<thead>
<tr>
<th>Case</th>
<th>Amt of Coal (Billion ton/yr)</th>
<th>Required H_2 (Billion kg/yr)</th>
<th>CO_2 Sequestered (Gtc/yr)</th>
<th>Carbon Efficiency (%)</th>
<th>Energy Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>1.97</td>
<td>--</td>
<td>0.9</td>
<td>39.9</td>
<td>50.7</td>
</tr>
<tr>
<td>H_2CARTM</td>
<td>0.83</td>
<td>211.46</td>
<td>0</td>
<td>~100</td>
<td>65.2</td>
</tr>
</tbody>
</table>

No need for CO_2 sequestration!
Advantages: Longevity of Coal

- Life time of coal at current consumption rate 244 years
- It drops to 89 years if coal to liquids is used to supply transportation need
- \(H_2 \text{CAR} \) increases life time of coal from 89 years to 144 years
To Sum Up:

- Biomass alone can not sustain the entire US transportation sector
- Proposed a novel partnership between biomass and H₂ from carbon-free energy source
- H₂CAR™ Biomass process can potentially support entire US transportation sector
- An alternative for on-board H₂ storage no longer needed
- Existing fuel infrastructure can be used
- No need for CO₂ sequestration from coal
Acknowledgement

- Center for Coal Technology Research (CCTR)
- Energy Center at Purdue University
....Thank you