Battery Safety Overview

Flex Lab Safety Committee Meeting

By Conner Fear

ETSL – Purdue University

November 4th, 2021
Frequent accidents involving Li-ion batteries capture attention of consumers, lawmakers, and researchers alike.
• Consumers grow wary as personal electronics and electric vehicles unexpectedly combust
• TSA restricts shipment of batteries after multiple fires during flights
Li-ion Battery Thermal Safety

Thermal safety issues plague high energy Li-ion batteries

- Heat Generation
- Exothermic Side Reactions
- Increased Cell Temperature
- Improved Reaction Kinetics

Table:

<table>
<thead>
<tr>
<th>Onset T (°C)</th>
<th>Side Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>660</td>
<td>Aluminum melts</td>
</tr>
<tr>
<td>330</td>
<td>Anode collapse</td>
</tr>
<tr>
<td>160-225</td>
<td>Electrolyte vaporization and combustion</td>
</tr>
<tr>
<td>130-180</td>
<td>Separator melts, internal short</td>
</tr>
<tr>
<td>140</td>
<td>Cathode decomposition and electrolyte reaction</td>
</tr>
<tr>
<td>110-140</td>
<td>Secondary SEI formation and decomposition</td>
</tr>
<tr>
<td>85-105</td>
<td>Primary anode SEI decomposition</td>
</tr>
</tbody>
</table>

*Lopez, Jeevarajan, and Mukherjee, *J. Electrochemical Society*, 162, A2163 (2015).*
Overcharge

Cell 8
Overcharge C/3-rate

Cell 18
Overcharge C/3-rate

Cell 18
Overcharge C/3-rate

Top View
Side View
Tabs

Top View
Side View
Tabs

(a) Anode

(b) Pouch – Electrolyte degradation charring marks
Lithium Dendrites in Fast Charging

Lithium dendrite growth during fast charging can cause internal short and rapid heat generation

N. Fear et al., ACS Appl. Mater. Interfaces 2020, 12, 27, 30438–30448
External Short

0% CF

10% CF

15% CF

20% CF

Deposition on cathode

Cathode SEM

Separator SEM

Sand-dune Pattern

Fluorine

Cobalt Fracture

(a)

(c)

(d)
Standard Test Setup

- Appropriate for charge/discharge cycling tests within manufacturer-recommended voltage and current windows
Examples of Mild Risk Tests

- Instrument cells with reference electrodes to detect lithium plating
- Perform fast charging at rates higher than manufacturer recommendation
Safety Options for Mild Risk Tests

Charging Sack:
- Low cost option to contain (not eliminate) fire risk during charging

Explosion-Proof Box:
- Good option for abusive cycling tests or instrumented cells, where fire is not expected but is possible
In Case of Failure...

- **Leave the room**
 - Combustible gases can build up in enclosed spaces, leading to explosion
 - Trace amounts of HF can be present due to decomposition of electrolyte salts

- **Let the sprinkler system do its job**
 - Water is best way to put out a battery fire
 - Decomposition reactions will continue until cell temperature is reduced
 - High heat capacity of water makes it excellent for absorbing heat from cell
Accelerated Rate Calorimeter (ARC)

- ARC is designed to study thermal stability and heat release during thermal runaway events.
- Increases sample temperature in 5°C increments until exothermic reaction is detected.
- Maintains adiabatic environment while cell self-heats to thermal runaway.
- Allows for comparison of safety characteristics between cell chemistries and form factors.
Test Setup – Cell Level Thermal Runaway

Cylindrical Cell Test

- Voltage Leads
- Thermocouples
- Test Fixture

Pouch Cell Test

- Voltage Leads
- Thermocouples
- Test Fixture
Cells after Thermal Runaway