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Software fault tolerance

Recovery block based schemes|[1]
n-version programming|2]
Exception handling|[3]

Robust data structures[4]
» By adding redundancy

With unreliable data structures: this paper, [on B-Tree]
» Explore semantic information (built-in redundancy)
» No additional redundancy needed
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What did this paper accomplish?

A robust search method on BT -tree
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® Fault model: Only index corruption. Structure is correct

» Basic: single index corrupted

S

o Extended: multiple indices corrupted

® Search returns "yes" or "no". No false report.
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sbagchi
Sticky Note
Leaf nodes have data and are not corrupted.
The ordering of indices in a node is preserved. 


Index corruption

fBTP: T

node f

C o OO

left subtree right subtree

® An index I; is corrupted if I; does not satisfy BTP

® Suppose a corrupted index does not break the ascending
order on the node.

Observations:
® index corrupted = index changed
® index changed - index corrupted J
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Misdirected Search

® A corrupted index MAY misdirect a search
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incorrect co&rect
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search for K=9
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#® Consequence: you search for a existing key, but search
returns failure ("key not exist")
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® A search is misdirected only if there is a corrupted index

Suspicious set

-

sitting along the search trace.

Sl<li<=K<li+1<=S2 50 K should be in' S

nodell li \||i+1 ......
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The branching decision

= Robust search solution: remember all the indices along
the trace. Those indices are called “suspicious set”. If search
fails, check if the indices in suspicious set are corrupted.

If a corrupted index misdirected the search, the correct J
branching should be the alternate branch.
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A closer look

® So check each index in suspicious set? No, expensive.

-

® Assume single error. There is a smart solution.

» What happens after a corrupted index misdirected the

search?

node

D

corrupted index

e §

If a previous index which directs the search to R was
corrupted, during the rest of the search, indices chosen iu

the nodes must be the smallest
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Maintaining suspicious set

-

® So, if an index encountered during the search is not the
smallest one, the direction R given by the previous index
must be correct.

® 1: Procedure UPDATE SS(n: node; i: index)
2: if I; not the smallest index then
3:  delete(SSR)

4 if n is not a leaf then
5 add(SSR, (n, 7, R))
6: endif
7: end if
8: if I; not the largest index then
9:  delete(SSy)
10: if nis not a leaf then
11: add(SSr, (n, i+ 1, R))
L 12:  end if J
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Error detection

® Observation: For an unsuccessful search, SS = (SSg + SSt)

contains at most one index.

-

® Do a second search on the alternate branch of the suspicious

index

suspicious index in SS_L

node

/

e

/

Do a second search!

o

o If found, correct the error.
\— s If not found, check BTP again,

the error.

First search

iIf it is corrupted, correctJ
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Error correction

How to correct? Change the corrupted index to a value between
the largest in left-subtree and smallest in right-subtree.
Error correction comes after a unsuccessful first search.

® |f the suspicious index I is in SS,, you have already reached
the leftmost index 7 in the right branch,
let [ =71

® |f Iisin SSg, you have already reached the rightmost index
[ in the left branch,
let I =1+1

|
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at most m errors.

node

UPDATE SS m:

lqueue| == m.

Multiple errors

corrupted index

\\

delete an element from the queue only if

|
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Discussion

|7Overhead: T

® Storage overhead: a queue, size of 1 (single error), size of m
(multiple errors)

® Time overhead when there is no corruption.
» Maintaining suspicious set (It's no |/O operation).
o |If first search fail and suspicious set not empty, a second

search and .... (this probability is low when leaf size is
large, not common case).

A leaf /

113567 |9 |11(80

Suspicious set is non-empty only if you hit the smallest
or largest key in the leaf
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