L -
Robust Search Methods for B-Trees

Kikuo Fujimura, Pankaj Jalote

18th International Symposium on Fault-Tolerant Computing
(FTCS-18), 1988

Presented by Zheng Zhang

o |

Robust Search Methods for B-Trees — p.1/13

© o o o

°

Software fault tolerance

Recovery block based schemes|[1]
n-version programming|2]
Exception handling|[3]

Robust data structures[4]
» By adding redundancy

With unreliable data structures: this paper, [on B-Tree]
» Explore semantic information (built-in redundancy)
» No additional redundancy needed

|

Robust Search Methods for B-Trees — p.2/13

.

What did this paper accomplish?

A robust search method on BT -tree
7

10

11

11

80

® Fault model: Only index corruption. Structure is correct

» Basic: single index corrupted

S

o Extended: multiple indices corrupted

® Search returns "yes" or "no". No false report.

|

Robust Search Methods for B-Trees — p.3/13

sbagchi
Sticky Note
Leaf nodes have data and are not corrupted.
The ordering of indices in a node is preserved.

Index corruption

fBTP: T

node f

C o OO

left subtree right subtree

® An index I; is corrupted if I; does not satisfy BTP

® Suppose a corrupted index does not break the ascending
order on the node.

Observations:
® index corrupted = index changed
® index changed - index corrupted J

Robust Search Methods for B-Trees — p.4/13

sbagchi
Note
Marked set by sbagchi

sbagchi
Note
Accepted set by sbagchi

sbagchi
Note
Completed set by sbagchi

sbagchi
Text Box
<

sbagchi
Text Box
<= R

-

Misdirected Search

® A corrupted index MAY misdirect a search

7

incorrect co&rect

10

11

search for K=9

5

8

9

11

80

#® Consequence: you search for a existing key, but search
returns failure ("key not exist")

|

Robust Search Methods for B-Trees — p.5/13

sbagchi
Note
Marked set by sbagchi

sbagchi
Note
MigrationConfirmed set by sbagchi

sbagchi
Note
Completed set by sbagchi

sbagchi
Text Box
9

-

® A search is misdirected only if there is a corrupted index

Suspicious set

-

sitting along the search trace.

Sl<li<=K<li+1<=S2 50 K should be in' S

nodell li \||i+1

l N \IJ\

AN RIS

D

The branching decision

= Robust search solution: remember all the indices along
the trace. Those indices are called “suspicious set”. If search
fails, check if the indices in suspicious set are corrupted.

If a corrupted index misdirected the search, the correct J
branching should be the alternate branch.

Robust Search Methods for B-Trees — p.6/13

sbagchi
Text Box
S1 < li <= K < li+1 <= S2

-

A closer look

® So check each index in suspicious set? No, expensive.

-

® Assume single error. There is a smart solution.

» What happens after a corrupted index misdirected the

search?

node

D

corrupted index

e §

If a previous index which directs the search to R was
corrupted, during the rest of the search, indices chosen iu

the nodes must be the smallest

Robust Search Methods for B-Trees — p.7/13

Maintaining suspicious set

-

® So, if an index encountered during the search is not the
smallest one, the direction R given by the previous index
must be correct.

® 1: Procedure UPDATE SS(n: node; i: index)
2: if I; not the smallest index then
3: delete(SSR)

4 if n is not a leaf then
5 add(SSR, (n, 7, R))
6: endif
7: end if
8: if I; not the largest index then
9: delete(SSy)
10: if nis not a leaf then
11: add(SSr, (n, i+ 1, R))
L 12: end if J

13 end |f Robust Search Methods for B-Trees — p.8/13

Error detection

® Observation: For an unsuccessful search, SS = (SSg + SSt)

contains at most one index.

-

® Do a second search on the alternate branch of the suspicious

index

suspicious index in SS_L

node

/

e

/

Do a second search!

o

o If found, correct the error.
\— s If not found, check BTP again,

the error.

First search

iIf it is corrupted, correctJ

Robust Search Methods for B-Trees — p.9/13

-

Error correction

How to correct? Change the corrupted index to a value between
the largest in left-subtree and smallest in right-subtree.
Error correction comes after a unsuccessful first search.

® |f the suspicious index I is in SS,, you have already reached
the leftmost index 7 in the right branch,
let [=71

® |f Iisin SSg, you have already reached the rightmost index
[in the left branch,
let I =1+1

|

Robust Search Methods for B-Trees — p.10/13

-

at most m errors.

node

UPDATE SS m:

lqueue| == m.

Multiple errors

corrupted index

\\

delete an element from the queue only if

|

Robust Search Methods for B-Trees — p.11/13

Discussion

|7Overhead: T

® Storage overhead: a queue, size of 1 (single error), size of m
(multiple errors)

® Time overhead when there is no corruption.
» Maintaining suspicious set (It's no |/O operation).
o |If first search fail and suspicious set not empty, a second

search and (this probability is low when leaf size is
large, not common case).

A leaf /

113567 |9 |11(80

Suspicious set is non-empty only if you hit the smallest
or largest key in the leaf

Robust Search Methods for B-Trees — p.12/13

-

-

References

[1]

2]

B. Randell, “System structure for software fault tolerance”,
IEEE Trans. on Software Eng., June 1975, Vol.SE-1, No.2,
pp.220-232

A. Avizenis, "The N-version appraoch to fault tolerance",
IEEE Trans. on Software Eng., Dec. 1985, Vol.SE-11, No.12,
pp.1491-1501

F. Cristian, "Exception handling and software fault
tolerance", IEEE Trans. on Computers, Vol.C-31, No.6, June
1982, pp.531-540

D. J. Taylor, D. E. Morgan, and J. P. Black, "Redundancy in
data structures: Improving software fault tolerance", IEEE
Trans. on Software Eng., Nov. 1980, Vol.SE-6, No.6, J

pp585_594 Robust Search Methods for B-Trees — p.13/13

	Software fault tolerance
	What did this paper accomplish?
	Index corruption
	Misdirected Search
	Suspicious set
	A closer look
	Maintaining suspicious set
	Error detection
	Error correction
	Multiple errors
	Discussion
	

