
t
!

\

Chapter 7

Data Replication
and Resiliency

In the last chapter, we discussed the problem of making a user-level action into an
atomic one. A user-level action is a logical operation that accesses or modifies many
data objects. The goal of an atomic action is to ensure that either the action completes
successfully, or it appears as if the action had not executed at all. That is, the state
of partially executed actions should never be visible, even if failures occur. We saw
that if a node fails, making even some of the data objects required by the action
unavailable, there was nothing else to do but to "abort" the action and make it appear
as if nothing had happened.

In this chapter, we will discuss a different approach where the action can be
completed successfully even if some failures occur in the system. That is, we want the
action to be resilient to failures. The goal is still to execute the actions atomically, with
the difference that we are interested in successful completion, rather than rollback,
if failures occur. Due to this, the techniques employed are quite different from the
techniques for supporting atomic actions discussed in the previous chapter.

Clearly, if a data object resides at a single node, then nothing can be done to
successfully complete an action which needs that data item, if that node fails. Hence
to be able to finish an operation despite failures of nodes, data items need to be
replicated on many nodes, such that failures of a few nodes do not make some data
item inaccessible to user operations.

Data replication, though it provides resiliency against failures, introduces new
problems of consistency and replica management. Since the purpose of replication is
to provide tolerance against failures, the replication should not be visible at the user
or action level. For performing actions, it sho/lld appear as if there is a single copy of

257

258 CHAPTER 7 DATA REPLICATION AND RESILIENCY
7.1 OPTIM~

each data item. An action will perform operations on the logical data items, and the
underlying system will map it to operations on the multiple copies of the data items.
To be correct, the mapping must ensure that the concurrent execution of actions on
replicated data is equivalent to a correct execution on non-replicated data. That is,
the execution should be equivalent to a serial execution of actions on non-replicated
data. This correctness property is called the one-copy serializability criterion. The
methods to manage replicated data such that the one-copy serializability criterion is
satisfied are called replica control algorithms. One-copy serializability requires that
the different copies of a data object must be in a mutually consistent state so that the
user actions get the same view of the data object. Due to this consistency requirement,
replica control algorithms are also called consistency control algorithms.

In a system with replication, different data items are replicated on different nodes.
Each node manages some copies of some data items. For simplicity of exposition,
we will assume that all the data objects are replicated on all the nodes in the system
under consideration.

There are two types of failure~ that need to be handled by a replica control
algorithm: node failures and communication failures. Node failures cause copies of
the data on that node to become inaccessible. The rest of the network is connected
and the remaining copies of the data objects are available. The replica control
algorithms have to ensure that even if some sites fail, making some copies of a
data item unavailable, the operations on the logical data can be performed, and the
one-copy serializability criterion is satisfied.

The second failure, which is a lot more disruptive, is a communication failure
leading to network partitioning. In this, nodes and links fail in a manner such that the
remaining nodes are partitioned into groups. Nodes in each group or partition can
communicate with each other, but cannot communicate with nodes ofthe other group.
Ideally, a replica control protocol should also maintain one-copy serializability under
network partitioning. Clearly, if no restriction is placed on processing in different
partitions, then the mutual consistency of the different copies cannot be preserved
when the network reconnects, and a user operation may get a different view of
the data object depending on which copies of the data object it accesses, thereby
violating the one-copy serializability criterion. A replica control protocol that can
handle partitions must place restrictions on processing in different partitions so that
mutual consistency is not violated. That the protocol has to do this without any
communication between different partitions is one of the major challenges.

In this chapter, we will describe some replica control methods to mask the
failures in a system with replication. Replica control methods can be optimistic
or pessimistic [DGS85]. In optimistic strategies, if network partitioning occurs,
no restriction is placed on processing in any partition in the hope that operations

being execut,
on the other 1
During parti'
is happening
There are th
active replic:
of the chapt4

The foc
replicating 1

performs th
the processl
the data un:
the topic of

7.1 Op

As mentiOl
ifanetwor
in differer
serializabi
satisfy the
(i.e., copi,
inconsiste
partitions
strategies
is really I

In this se,
approach

Duril
independ
partition:
One app
operatio~

the LaC
In tl

replicati
to origir
updatei

~-------------_...-..-

IENCY 7.1 OPTIMISTIC APPROACHES 259

, and the
ta items.
tions on
That is,

:plicated
on. The
terion is
ires that
that the

irement,

Ltnodes.
losition,
~ system

control
opies of
nnected
control

ies of a
and the

Lfailure
that the
~ion can
rgroup.
:yunder
lifferent
eserved
view of
thereby
hat can
,so that
Jut any

ask the
timistic
occurs,
~rations

being executed in different partitions will not conflict. The pessimistic strategies,
on the other hand, prevent inconsistencies from occurring by limiting access to data.
During partitioning, each partition makes the worst-case assumptions about what
is happening in other partitions, and operates under these pessimistic assumptions.
There are three common pessimistic approaches for replica control: primary site,
active replication, and voting. We will discuss all three approaches during the course
of the chapter.

The focus of the chapter is how to make data resilient to node failures (by
replicating the data). We do not discuss the effect of failure on the process which
performs the actions, and which wants to access the data. For now, we assume that
the processes executing the actions remain alive; failures only make some copies of
the data unavailable. How to make the processes themselves. resilient to failures is
the topic of the next chapter.

7.1 Optimistic Approaches

As mentioned above, optimistic strategies do not place any restriction on processing,
if a network partitioning occurs, in the optimistic hope that operations being executed
in different partitions will not conflict. Under this optimistic assumption, the
serializability in each group can be preserved, but overall processing may not
satisfy the one-copy serializability criterion, and global inconsistencies may arise
(Le., copies from different partitions may not be mutually consistent). If global
inconsistencies arise, then optimistic strategies try to resolve them after different
partitions join and are able to communicate with each other. The different optimistic
strategies differ from each other in how they resolve the inconsistencies, since there
is really not much that needs to be done by these strategies during the processing.
In this section, we will briefly discuss some optimistic approaches. The pessimistic
approaches will be discussed in later sections, and will form the bulk of this chapter.

During a network partitioning, if operations are performed in each partition
independently, the copies ofdata in different partitions may be inconsistent. When the
partitions rejoin, such inconsistencies have to be detected, and resolved, if possible.
One approach that can be used to detect inconsistencies that occur due to write
operations in different partitions is version vectors. This technique was employed in
the LOCUS operating system [S+83].

In this approach, files are treated as the basic data objects, and are the unit of
replication. A file f can have many copies, all on different nodes. An update is said
to originate from a node i if the request from the user arrived at node i. Whenever an
update is to be performed on f, all copies of f that are accessible from the node from

260 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.10PTIMJ

where the update request originated are updated. Each copy of a file has associated
with it a version vector, whose size is n, where n is the number of sites at which the
file is stored. The version vector V of a copy of the file f represents the number of
updates originating at different nodes that were performed on this copy. That is, at
a node j, the ith vector entry Vi keeps count of the number of updates originating
from site i that were performed on the copy of f at the node j.

Clearly, if the network is fully connected, then each update will be performed on
each copy of the file, and the version vector ofeach copy will be the same. However,
if a partitioning occurs, then the version vectors of the different copies in different
partitions may diverge, depending on the nature of operations performed in different
partitions.

A vector V of a copy of a file is said to dominate another vector V' of another
copy of the same file, if Vi 2: v' i for all i = 1, ... , n. If a vector V dominates V', it
indicates that for every node j, more updates made from j were performed on the
copy with V, as compared to the copy with V'. In other words, updates seen by the
copy with V' are a subset of updates seen by the copy with the version vector V.
Two vectors are said to conflict if neither dominates. This represents the case where
the copies have seen different updates.

When two groups join and are able to communicate with each other, vectors are
compared. If a vector of one group dominates the other, then though this situation
also represents an inconsistency (the states of the two copies are not the same), this
inconsistency can be resolved easily by copying the file with version V onto the copy
with version V', since the copy with V is a more recent copy of the file than the
copy with V'. If the vectors of the groups that are joining conflict, then there is no
straightforward way to resolve the inconsistency, and the version vector approach
leaves it to the manager pf the system to manually do whatever is necessary.

In other words, in this optimistic approach, if after partitioning the operations
performed in the different operations are non-conflicting, then the version vector
method provides an approach for combining the different versions in different
partitions into a single consistent version after the partitions rejoin. But if the
operations performed in the different groups conflict, then no mechanism is provided
to ensure that this is resolved and mutual consistency is violated.

Consider the example of a three node network whose partition graph is shown in
Fig. 7.1 [DGS85]. The nodes A, B, and C have initially the same vector, each entry
being°(we consider a single file case). The system partitions into two groups, one
containing nodes A and B, and .the other containing the node C. Now suppose the
node A makes two updates on the file. Since A and B are connected, the version
vectors of nodes A and B will be < 2, 0, °>, while the version vector of node C is
< 0,0,°>. Now suppose node B splits off with node A and joins node C. Since

the version
resolved b)
Now durin:
The reque!
the update
version vel
version vel
manually.

Versio
file. They
If an actio
besides th
order to d
applicatio

Ane>
transactic
precedenl
a precedf
items. It
each part
partition

>ILIENCY

associated
t which the
number of
That is, at

:)riginating

formedon
However,

n different
n different

of another
ates V', it
led on the
~en by the
vector V.
ase where

p

7.1 OPTIMISTIC APPROACHES

{A, B, C } <0,0,0>

/~
<2,0,0> {A, B } { C } <0,0,0>

~
<3,0,0> { A } { B, C } <2,0,0>

~/.
{ A, B, C } <Conflict Of

Version Vectors>

Figure 7.1: Example with version vectors

261

'"

ectors are
: situation
llI1e), this

>the copy
~ than the
lere is no
approach
y.
perations
>n vector
different
ut if the
provided

;hownin
lch entry
ups,one
pose the
version

ode C is
:. Since

the version vector of node B dominates the version vector of node C, the conflict is
resolved by copying the file from node B to node C (along with the version vector).
Now during this grouping, suppose node A and node C both make update requests.
The request of node A will make the version vector of node A < 3,0,°>, as
the update by C will have no effect on the version vector at node A. Similarly, the
version vector at node B or C will be < 2, 0, 1 >. Now if these two groups join, the
version vectors conflict, since no vector dominates the other. This has to be resolved
manually.

Version vectors can detect only inconsistencies arising due to updates on a single
file. They cannot detect read-write conflict, as the reads on a file are not recorded.
If an action or a transaction accesses multiple files, as is common in databases, then
besides the write-write conflict, the read-write conflict also has to be detected in
order to detect the violations of transaction serializability. Consequently, for such
applications, the version vectors approach is not suitable.

An extension of this approach was proposed in which both reads and writes of
transactions are logged [Dav84, DGS85]. When the different groups rejoin, then a
precedence graph is formed to detect inconsistencies. In order to be able to construct
a precedence graph, each partition maintains a log of all reads and writes on data
items. It is assumed that a transaction always reads a data item before writing it, and
each partition follows some concurrency control protocol such that transactions in the
partition are serializable. For a partition i, let the serialization order (i.e., the serial

7.2.1 Basic Approach

7.2 Primary Site Approach

The goal of the primary site approach is to continue providing access to the data (in
general, any resource) even if some nodes or links in the system fail. For now, we

In this section, we describe the primary site approach, which is a pessimistic strategy
for managing replication to support resiliency [AD76]. This approach has been used
in a variety ofcontexts, not just for supporting data resiliency. In a distributed system,
this approach works well if only nodes can fail, or if both nodes and communication
links can fail but node failures can be distinguished from network partitions. We will
first describe the general strategy, and then one particular implementation of resilient
data objects using this approach.

assume that 0

connected. l'
even if up to t
objects.

For SUpP(
system. One
designated a:
the primary :
primary site.
the primary.

If the o~

operation ar
update, then
to at least k
the primary
perform the
arrive first ~

all backups
communica
on perform
the data 011

performed
of the data
the operati
typically p

Nowc
simultane(
If the total
Suppose tl
disrupted,

If the
ways for
election a
in a linear
The new
primary ~

start perf
it by the I
the last c

7.2 PRIMAlI
!
I

I
i

CHAPTER 7 DATA REPLICATION AND RESILIENCY262

order to which the execution of the transactions is equivalent) of the transactions be
Ti 1, Ti2, ... , Tin.

When the partitions rejoin, a precedence graph is constructed as follows.
Transactions are nodes in this graph, and edges represent dependencies between
transactions. For two transactions Ti j and Ti k in the same partition i, an edge is
added from Tij to Tik if (a) 1ik has read a value produced by Tij, or (b) Tij read
a value that was later modified by Tik. The concurrency control protocol of the
partition will always ensure that the precedence graph of transactions in a partition
is always acyclic. To complete the precedence graph, conflicts between transactions
of different partitions must also be represented. Ani(;edge is added from node Ti j
(representing a transaction in partition i) to T[k, i I- <I, if Ti j has read an item written
by T[k. This edge represents a read-write conflict between the two transactions
operating in two separate partitions. A write-write conflict will be reflected as two
read-write conflict edges.

If there is no conflict between transactions of different partitions, the precedence
graph will be acyclic. If the graph is not acyclic, it means that there are conflicts.
Conflicts are resolved by aborting some transactions till the precedence graph is
acyclic. There are many different ways to select the transactions to be aborted
[Dav84]. Once the graph is acyclic, all inconsistencies have been resolved and the
databases of the different partitions can be merged. Note that aborting transactions
in order to resolve inconsistencies arising due to the optimistic strategy may require
that committed transactions also be aborted. That is, with partitioning, a transaction
commit is not final, as it may need to be aborted later when the partitions rejoin.

•

.ESILIENCY

>

7.2 PRIMARY SITE APPROACH 263

ransactions be

d as follows.
lcies between
I i, an edge is
Ir (b) Til read
rotocol of the
; in a partition
m transactions
rom node Til
III item written
o transactions
:flected as two

he precedence
~ are conflicts.
lence graph is
to be aborted
solved and the
19 transactions
~y may require
~, a transaction
ions rejoin.

mistic strategy
.has been used
ibuted system,
ommunication
[tions. We will
ion of resilient

to the data (in
. For now, we

assume that only node failures occur in the system, and the operational nodes stay
connected. The goal now is to ensure that operations on the data can be performed
even if up to k nodes in the system fail. That is, the goal is to support k-resilient data
objects.

For supporting k-resilient data, the data is replicated on at least k + 1 nodes in the
system. One of the nodes having the data is designated as primary, and the rest are
designated as backups. The nodes are logically organized in a linear fashion, with
the primary as the first node. All requests for operations on the data are sent to the
primary site. If a request is sent to a backup site, the backup forwards the request to
the primary.

If the operation requested is a read, then the primary site simply performs the
operation and returns the results to the requesting process. If the operation is an
update, then before performing the update, the primary site sends the update request
to at least k of its backups. When all these backups have received the request, then
the primary performs the operation, and returns the results, if any. All the backups
perform the update operations they receive from the primary site. Since all requests
arrive first at the primary site which forwards the update requests to other backups,
all backups also get the requests in the same brder as the primary site (since the
communication channels are assumed to be reliable and order-preserving). Hence,
on performing these requests, the data at the backups will be in the same state as
the data on the primary. An alternative method to reduce the computation to be
performed by the backups is for the primary to periodically checkpoint the state
of the data object on the backups. In this case, the backups only need to perform
the operations that were performed by the primary after the checkpoint. These are
typically performed only when a backup becomes the primary.

Now consider what happens if some sites fail. If more than k sites fail nearly
simultaneously, then nothing can be done, as the degree of replication is only k + 1.
If the total number of failures is less than k, then this scheme can mask the failures.
Suppose that the failed sites are backup nodes. In this case, the user service is not
disrupted, as the user gets its responses from the primary site.

If the primary site fails, then a new primary has to be elected. There are various
ways for electing a primary (the reader is referred to [Gar82] for a discussion on
election algorithms). We describe one simple approach. Since the nodes are ordered
in a linear chain, the highest node in this chain that is alive becomes the new primary.
The new primary is now responsible for performing the user operations. If the
primary site records each operation on the backups, then the new primary site can
start performing user requests after it has processed all the operations forwarded to
it by the previous primary. If checkpoints are used, the backup starts executing from
the last checkpoint and first performs all the operations performed by the previous

264 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.2 PRIMA

primary since the last checkpoint was established.
The one-copy serializability criterion is clearly satisfied when there are no

failures, since all requests go to the single site - the primary site. Since all backups
also get the update requests in the same order as the primary site, they are in the same
state as the failed primary after performing the requests. Hence, when a backup takes
over as primary, again the overall one-copy seriaiizability criterion is preserved.

Now let us discuss failures that cause network partitioning. In this case, clearly
only the partition that has the primary site can function, the other partitions cannot.
That is, requests originating in the partition having the primary site can be serviced
by the primary site. Requests originating in the other partitions cannot be forwarded
to the primary site, and hence cannot be serviced. Hence, two different approaches
are used for masking these two types of failures. In case of node failures which do
not cause partitioning, the failure of a primary site is handled by one of the backups
taking over the role of the primary. In the case of partitioning, no such action is done
and the partition that has the primary site continues to function.

Since the primary site method employs two different approaches to handle
node failures and network partitions, it can only work if network partitions can
be distinguished from node failures. That is, the approach can work only if a node
that is unable to communicate with the primary site can determine if this is due to
site failures or network partitions. In the first case, where it knows that the primary
site has failed, election is held to select a new primary. In the second case, the node
simply waits until the partitions merge and it is able to communicate again with the
primary.

7.2.2 Resilient Objects Using the Primary Site Approach

Now we describe an implementation of the primary site approach for supporting
resilient objects [BJRA85]. Objects here are not simple data objects that are read or
written, but are treated as an instance of abstract data types, as described earlier in
Chapter 2. These types of objects give rise to nested actions, and the implementation
has to handle that correctly. This method aims to support k-resilient objects. It also
handles only node failures, and uses checkpointing to transfer state information from
the primary site to the backups.

The objects are deterministic and if an operation is invoked on different copies of
an object that are in the same state, then each object will execute the same sequence of
steps and will reach the same state after the operation is completed. An operation on
an object may be a top-level operation or a nested operation. A top-level operation
is one that is requested by a user process. An operation on an object may invoke
operations on other objects, giving riseJto nested operations.

b

Each op
each step ai

to an operat
rise to neste,
step ai is i.

Since a
a sequence
Besides ens
the data to
Hence, ana
that even if

Each 01

to which 01
the state 0

is transmit
completin~

Check]
checkpoin'
before it f.
from that ~

since its h
checkpoin
operation
made twic
This can c
execute SI

the result:
checkpoiJ

This j

(a timest:
operation
a unique
there is aJ
for the ca
in furthel
the resul
the oper:
of the ca
results a

ESILIENCY 7.2 PRIMARY SITE APPROACH 265

there are no
::e all backups
re in the same
l backup takes
preserved.
; case, clearly
itions cannot.
In be serviced
be forwarded
1t approaches
Ires which do
f the backups
iction is done

les to handle
>artitions can
Inly if a node
this is due to
t the primary
ase, the node
gain with the

Ir supporting
it are read or
led earlier in
)lementation

~ects. It also
mation from

ent copies of
:sequence of
operation on
'el operation
may invoke

Each operation on an object is a sequence of steps A = {ai, a2, ... , an}, where
each step ai is a primitive operation, which could act on the data object or be a call
to an operation on another object. If a step is a call to another operation, this gives
rise to nested actions, and the step is called an external step. The index of an external
step ai is i.

Since an operation on the object is not a primitive operation, but consists of
a sequence of primitive steps, nodes may fail during the execution of operations.
Besides ensuring that the data object is accessible even if up to k sites fail, we also want
the data to be resilient so that the ongoing operations are not disrupted by failures.
Hence, another goal of supporting resilient objects isforwardprogress, which means
that even if up to k nodes fail, the executing operations will be successfully completed.

Each object is replicated on at least k + 1 sites, one of which is the primary site,
to which operations on the object are sent. The primary site periodically checkpoints
the state of the object on the backups. During checkpoints, enough information
is transmitted by the primary site to its backup so that any backup is capable of
completing the ongoing operation from the checkpoint.

Checkpointing is not sufficient for ensuring forward progress. If the last
checkpoint was established after the step ai of an operation A by the primary site
before it failed, then the backup which becomes the primary will start executing A
from that state. A problem arises if the primary site had performed an external step
since its last checkpoint. The new primary site does not know about this (since the
checkpoint does not reflect the external call), and hence will invoke the external
operation again. That is, for an operation A, the call to the external operation is
made twice due to failure, while in normal processing, only one such call is made.
This can clearly lead to an inconsistent state. Hence, the new primary site should not
execute such external calls again. At the same time, the new primary site has to get
the results of the external call in order to complete the processing starting from the
checkpoint.

This is achieved as follows. Each operation A is assigned a unique operation-id
(a timestamp-based scheme can generate unique-ids). A primary site makes this
operation-id known to the backups before it starts executing A. Each step is assigned
a unique step-id which is the operation-id concatenated with the index of the step. If
there is an external call during the operation A, then the step-id of the step responsible
for the call becomes the operation-id for that operation. The same method is followed
in further nested calls, if any. At the end of the external call, the primary site transmits
the results of the step to all the backups before it returns the result to the caller of
the operation. Each backup keeps the results of these calls indexed with the step-id
of the call. These are called retained results: when an external call is made, then its
results are retained by the backups. This is a form of limited checkpointing by the

266 CHAPTER 7 DATA REPLICATION AND RESILIENCY
7.3 RESILI

primary site.
Retained results can solve the problem described above. When an execution

of an operation needs to make an external call, the node (the current primary site)
executing the operation first checks to see if there are any retained results for this
step-id. If so, it simply returns the result of the operation and does not make the
external call. Note that since each operation is deterministic, starting execution from
a checkpoint, a new primary site will assign the same step-id to the external call,
since the index of the step will be the same as in the original primary site. This
scheme makes sure that an external call is executed exactly once on the object, and
no results are lost due to failures. The retained results can be deleted once the parent
operation responsible for the nested call terminates.

To ensure one-copy serializability, proper concurrency control is also needed.
With the primary site approach, since all requests are routed to the primary site, any
centralized concurrency control protocol can be used. In the method described above,
two-phase locking was used. However, this is not sufficient to handle failures. For
masking a failure completely, the new primary site must also have all the information
about the locks, otherwise it may resolve concurrent requests in a manner that may
never occur with a centralized database. This can be done simply by the primary
site distributing the information about locks to its backups. This can be done at each
lock operation, or by piggybacking the information on other message exchanges to
reduce the communication cost.

7.3 Resiliency with Active Replicas

In the primary site approach for supporting resiliency, only the primary site is really
active and services user requests. The backups are largely passive replicas which
record operations forwarded to them by the primary. By keeping only one copy
active, supporting the one-copy serializability property is simplified. In this section,
we will discuss another approach for supporting resiliency where all the replicas
are simultaneously active. Since all replicas are active, other conditions have to
be satisfied to ensure that the one-copy serializability property is satisfied and the
different copies remain mutually consistent. As we will see, one way to satisfy
the condition is by atomic broadcast. Though we are discussing this approach for
supporting data resiliency, like the primary site approach, the method of active
replication is very general and has also been used in other contexts to support
resiliency. This approach is the most suitable for supporting resiliency against node
failures only. Hence, we assume for this section that only node failures occur, and
the communication network stays connected.

t

7.3.1 Sta~

The method
This approal

data replica
nodes reque
and servers
for supporti
as fail stop
on [Sch90).

In the
replicating
mask up to
of sending
replicas an
operation.
serializabil
that all wil

If each
same orde:
determinis
get the sa
properties
every req\
the same (

For f~

jThe requi
"does not I

only one
state mac
nonfault)
possible,

The <

requests
machine
same as'
two reqt
the ordel
will con

mSILIENCY 7.3 RESILIENCY WITH ACTIVE REPLICAS

7.3.1 State Machine Approach

267

I an execution
t primary site)
'esults for this
not make the

xecution from
external call,

U)' site. This
h.e object, and
nce the parent

also needed.
nary site, any
:cribed above,
failures. For

e information
mer that may
1 the primary
.done at each
exchanges to

site is really
olicas which
ly one copy
this section,
the replicas
ons have to
fied and the
ly to satisfy
pproach for
ld of active
to support

:gainst node
; occur, and

The method ofusing active replicas is also called the state machine approach (Sch90].
This approach views the system as consisting of servers and clients. In the case of
data replication, the nodes having the copy of the data will be servers, while the
nodes requesting operations on the data will be clients. We assume that the clients
and servers are separate nodes. The state machine approach is a general approach
for supporting fault tolerance by replication. It can handle Byzantine failures as well
as fail stop failures. Our discussion is limited to fail stop failures only and is based
on (Sch90].

In the state machine approach, resiliency against failures is supported by
replicating the servers on different nodes. For k-resiliency. (Le., a system that can
mask up to k node failures), the data is replicated on at least k + I nodes. Instead
of sending a request to a designated node, a request is sent to all replicas. All
replicas are equivalent and perform the request, and any can send the reply for the
operation. Since any replica is allowed to service any request, to preserve one-copy
serializability, it is essential that all replicas service a request in the same state so
that all will provide the same result.

If each replica is initially in the same state, and gets the same set of requests in the
same order, then each will produce the same output for an operation (as objects are
deterministic). Hence, the key for supporting resiliency is to ensure that all replicas
get the same sequence of requests. This, in turn, requires agreement and order
properties be satisfied [Sch90]. Agreement states that all nonfaulty replicas receive
every request, and order states that every nonfaulty replica process the requests in
the same order.

" For fail stop processors, the agreement requirement can be relaxed. (Sch90].
(The requirement of order can be relaxedJf a request r is such that its processing
aoes not modify the state of the state machine, then that request needs to be sent to
only one nonfaulty state machine. This is so because the response from a nonfaulty
state machine is guaranteed to be correct and the same as the response from other
nonfaulty state machines. (Note that this does not hold if Byzantine failures are
possible, since in that case, the response of a state machine cannot be trusted.)

The order requirement can be relaxed for requests that commute [Sch90]. Two
requests rand r' commute for a state machine if the outputs produced by the state
machine and the final state of the state machine by processing r before r' are the
same as would result from processing r' before r. Clearly, if the result of executing
two requests is the same, regardless of the order in which they are executed, then
the order in which they are received at different state machines is not important. We
will consider the general case only where we do not make any assumptions about

268 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.3 RESIL

the commutativity of operations.
Agreement can be satisfied by a Byzantine agreement protocol, if the failures are

Byzantine, or by a reliable broadcast protocol, ifnodes are fail stop. Since we assume
that the nodes are fail stop, agreement can be satisfied by reliably broadcasting each
request to all the replicas. We have seen protocols for reliable broadcast earlier in
Chapter 4.

The order requirement can be satisfied by assigning unique identifiers to requests
and having state machine replicas process the requests according to the total order
relation on the identifiers of the requests. This means that at any given time, a state
machine should process a request that not only has the smallest identifier, but should
not accept a future request that may have a smaller identifier. A request at a state
machine replica is considered to be stable if no request can come later to the state
machine from any client which has a smaller identifier [Sch90]. This means that the
order requirement can be satisfied if each state machine replica processes the stable
request with the smallest identifier. Since each request is reliably broadcast to each
replica, if each replica follows this rule for servicing a request, then all replicas will
service the requests in the same order. This reduces the problem of satisfying the
order requirement to determining the stability of a request.

Stability can be determined if requests are assigned unique identifiers using the
logical clocks discussed earlier in Chapter 2 and by using the following approach
[Sch90]. If these clocks are used for assigning identifiers to requests, then we know
that the identifiers will be consistent with the "causal" relationship. With logical
clocks, a request r is stable at a state machine if the state machine has received a
request with a larger identifier than r from every nonfaulty client in the system.
Since the replica has received requests with a larger identifier from all clients, the
property of logical clocks ensures that no request can be received later from a client
with a request with a smaller identifier than what has already been received by the
state machine. This implies that the state machine will never receive a request from
any node which will have a smaller identifier than that of r. Hence, the request r is
stable at the state machine.

There are various other ways to determine stability for satisfying the property
[Sch90]. One approach to satisfy both the agreement and order is to use atomic
broadcast. This approach will be used in the example discussed later in the section.

7.3.2 Resilient Objects Using Atomic Broadcasts

We now consider the object-action model for supporting resiliency which uses
the state machine approach discussed above. With objects, we can have nested
operations, since an operation on an 9bject may invoke other operations. We have

already see
primary sit,
one methoc
the state m:
does not ge

Eachd
request oP(
operations
ofan opera
performed
to all the n
methods tc
broadcast·
the differel
the mutual

If an (
operation·
willreque:
For consis
this, a nUl
number. 1
id-numbel
these con<
id-numbe
image.

AssUI
is increm
operation
nodefol1(
request is
the seque
the paren

Arne
request.
queue wI
operatiOI
(result) (
in reqi(r

checkin~

...-1- • _

RESILIENCY 7.3 RESILIENCY WITH ACTIVE REPLICAS 269

.the failures are

ince we assume
ladcasting each
dcast earlier in

iers to requests
the total order
~n time, a state
fier, but should
~uest at a state
ter to the state
means that the
:sses the stable
tadcast to each
11 replicas will
satisfying the

fiers using the
ving approach
then we know

With logical
las received a
n the system.
tIl clients, the
. from a client
:ceived by the
.request from
le request r is

: the property
o use atomic
n the section.

, which uses
have nested

ns. We have

already seen, while discussing the implementation of resilient objects using the
primary site approach, that this introduces new problems. Here we will discuss
one method that supports resilient objects by using active replicas [JaI89]. As with
the state machine approach, we assume that the sites can fail, but that the network
does not get partitioned.

Each data object is replicated on all the nodes in the system. Any process can
request operations on the replicated objects. A node employs messages to request
operations (on behalfof processes or operations on processes) and to return the results
ofan operation. A request for an operation is sent to all the nodes, and the operation is
performed on all the replicas of the object. The requests for operations are broadcast
to all the nodes by using an atomic broadcast protocol. We have discussed various
methods to atomically broadcast a message earlier in Chapter 4. The use of atomic
broadcast protocol ensures that each operational node gets every request, and that
the different requests are delivered at different nodes in the same order. This ensures
the mutual consistency of different replicas.

If an operation is requested on an object 01 and that operation performs an
operation on another object' 02, then all the nodes performing the operation on 01
will request the operation on 02. These are images of the same independent request.
For consistency of data objects, only one of these requests should be serviced. For
this, a numbering scheme is used. Each operation on an object is assigned an id­
number. The id-numbers should be such that each independent request has a unique
id-number, and all images of an independent request have the same id-number. If
these conditions are satisfied, the images of a request can be identified by comparing
id-numbers. A top-level request is always an independent request, with only one
image.

Assume that each node is assigned a unique node number and has a counter that
is incremented whenever the node receives or broadcasts a message. For a top-level
operation request at a node, the id-number of the request is the node number of that
node followed by the value ofthe counter. For anested operation, the id-number ofthe
request is the id-number of the parent request followed by a sequence number, where
the sequence number is one more than the number of nested operations requested by
the parent operation before requesting this nested operation.

A message to request an operation on an object carries the id-number of the
request. Each node maintains two queues. For a node i, the queue reqi is the
queue where requests are kept, and resi is the queue which stores the results of the
operations. A request (result) is broadcast by a node only if a copy of that request
(result) does not exist in the respective queue, that is, if there is no request (result)
in reqi (reqi) with the same id-number as the incoming request (result). Due to this
checking, a request cannot be deleted from the queue immediately after it has been

270 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.3 RESILn

serviced. It has to be kept until no other copy of the request can arrive. For this,
when a request is serviced or a result is returned to the caller, it is not deleted from
the queue, but is merely marked. A request or a result can be deleted only after a
"sufficient" time has elapsed (which depends on the communication delays and the
relative processing speeds of nodes). The actions to be performed by a node i are
shown in Fig. 7.2.

request (r) -+

if r f/. reqi then broadcast(r)

o receive (m) -+

if m is a request for an operation then
ifm f/. reqj then add (reqj, m)

if m is a result then
if m f/. reSj then add (resj, m)

o not empty (reqj) -+

r = first unmarked request from reqi

a = result of performing the operation r

mark (reqi, r)
if (i is a requester for the operation r) then return (a)
if a f/. reSj then

add(resi, a)

broadcast(a)

Figure 7.2: Actions of a node i for supporting resilient objects

When a request is generated at a node, it is broadcast only if the same request
does not already exist in its request queue. If it exists in the queue, it means that this
is a nested operation request and some other node has already broadcast it. When
a request is received, it is added to the request queue if the same request does not
already exist in the queue. Similar action is taken when a result is received.

If there are requests in the,queue, the first unserviced (i.e., unmarked) request
is considered. The operation is performed and the request is marked. Marking a
request in the request queue implies that the operation has been performed on the
local replica. If the node is also a requt;ster for this operation, the result is returned

(to the reque~

level operati(
already exist
to the queue,

Itmightl
However, in
(result). Tt
Another noc
someothern
requests.

It is clea
on the data (
copies perfe
and up-to-d,
is successfu

So far, .

or a user a<
concurrenc~

With active
basic requil
concurrenc:
is ensured,
replica will
preserving

Onemt
operations
operation c
of the lock
is made. V.
operation,

Anotht
far implici
that the reI
when a no,
reintegrate
and recovc
update its
node will.

One",

..;... stz.· _

~SILIENCY 7.3 RESILIENCY WITH ACTIVE REPLICAS 271

ve. For this,
deleted from
I only after a
elays and the
a node i are

;ts

;;ame request
eans that this
ast it. When
lest does not
ived.
'ked) request
. Marking a
lrrned on the
It is returned

(to the requesting process). For a nested operation, all nodes are requesters; for a top­
level operation, only one node is the requester. If a result with the same id-number
already exists in the result queue, the result is marked; otherwise the result is added
to the queue, marked, and broadcast.

It might appear that only one message for each request or result will be broadcast.
However, in some cases, more than one message may be transmitted for a request
(result). This happens because of the delay in delivering a broadcast message.
Another node may broadcast the request (result) before it gets the message from
some other node. Hence, the scheme for supporting resiliency has to handle duplicate
requests.

It is clear that as long as at least one node is alive, operations can be performed
on the data objects. The use of atomic broadcast for reques~s ensures that all active
copies perfonn the same sequence of operations and are always mutually consistent
and up-to-date. Any object is capable ofservicing a request, and an ongoing operation
is successfully completed even if nodes fail during its execution.

So far, we have focused on an operation on an object. However, a transaction
or a user action may consist of many operations on different objects and proper
concurrency control measures have to be applied to ensure one-copy serializability.
With active replicas, any of the concurrency control methods can be used. The
basic requirement is that all replicas (or state machines) use the same method for
concurrency control that resolves conflicting requests in the same manner. If this
is ensured, since the same requests arrive at each replica in the same order, each
replica will face the same conflicts and will resolve it in the same manner, thereby
preserving mutual consistency.

One method is to use the two-phase locking protocol. For each object, two more
operations are defined: lock and unlock. When a user action makes a request for an
operation on an object, it first perfonns a lock operation on that object. If the result
of the lock operation is the granting of the proper lock, the request for the operation
is made. When no more requests need to be made, all the objects locked during the
operation are unlocked by the unlock operation.

Another issue withactive replicas is reintegration offailed nodes. We have so
far implicitly assumed that when a node fails, it remains failed, and we have shown
that the remaining nodes in the system can satisfy any request. However, in reality,
when a node fails, it recovers after it is repaired. Clearly, a repaired node cannot be
reintegrated into the system directly, since its state is now out of date (i.e., the failed
and recovered state machine has an old state). First, the recovered node will have to
update its state before servicing any request. For proper reintegration, the repaired
node will have to update its request based on the state of other nodes in the system.

One way to support reintegration is to define an operation called state (0) for an

272 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.4 VOTING

object 0, which returns the state of the object O. Suppose a node n becomes alive
after having failed. Then n first requests the operation state (0) for each object 0 that
resides on the node to update its copy of the object. It starts servicing requests only
after it receives the result of the state (0) operation. Suppose the node n' services
this state (0) request of n. It is possible that n may miss requests that arrive in
the system after n' prime sends the result of state (0) but before n actually starts
receiving requests. To avoid this after sending state (0), for some time the node n'
also forwards to n the requests for operations that it gets.

7.4 Voting

In this section, we will discuss another pessimistic approach for replica control that
employs voting. By voting we mean that performing an operation on replicated data
is decided collectively by replicas through voting. A voting algorithm ensures that
conflicting operations are not performed concurrently. A major advantage of many
of the voting algorithms is that they can mask both node and communication failures,
and do not require that a node distinguish between the two types of failures.

Voting-based methods have become extremely popular, and in recent times a
large number of voting algorithms have been proposed. Voting schemes can be
broadly considered as belonging to two categories: static methods and dynamic
methods. In static approaches, the vote assignment and quorum requirements do not
change, while in dynamic methods, vote assignment, total number ofcopies, or other
information about the system may change with time in an attempt to adapt to the
changing system state (in terms of failures or recoveries). We will discuss protocols
of both of these in this section.

7.4.1 Static Voting Methods

Weighted Voting
The first voting approach was proposed by Thomas in [Th079], which proposed

a restricted form of voting. The concept was later generalized to weighted voting
[Gif79]. Here we discuss the general weighted voting method.

In weighted voting, each replica of the node is assigned some number of votes.
Any node that wants to perform a read operation on the data must first acquire at least
r votes from the nodes in the system before it can actually read the data. Similarly,
a node must first acquire at least·w votes before it can write the data. The r and the
w are called the read quorum and the write quorum, respectively. Let the total votes
(Le., the sum of votes of each of the replicas) be v. The quorums must satisfy two
conditions:

l.r+w;:;

2. w > vI:
The first c

not only ensur
it also ensures
data in which
write quorum:
partitioned int
Note that two

The read
a version nun
performs a re
request for v(
sender with tt
The requester
nodes whose'
the quorum, t

For a real
the read quor
least one of tr
Hence, the re
has the highe

For the fI

write quorun
node makes:
This may reg
others before
the write qU(

The wei!
without requ
to collect the
was unable 1

Under only
nodes that a
the number <

performed.•
Suppose

most, one gI

~SILIENCY 7.4 VOTING 273

:comes alive
)bject 0 that
~quests only
: n' services
lat arrive in
tually starts
the node n'

control that
llicated data
ensures that
tge of many
ion failures,
Ires.
:ent times a
mes can be
ld dynamic
lents do not
ies, or other
Idapt to the
,s protocols

hproposed
hted voting

er of votes.
uire at least

Similarly,
e r and the
total votes

satisfy two

l.r+w>v

2. w > v/2

The first condition guarantees that every read and write quorum intersect. This
not only ensures that a read and a write operation cannot be performed concurrently,
it also ensures that every read quorum has a replica that contains the latest copy of the
data in which the latest update is reflected. The second condition ensures that two
write quorums intersect, which prevents write-write conflicts, and if the system is
partitioned into two groups, it allows a write to be performed in, at most, one group.
Note that two read quorums need not intersect, as there is no read-read conflict.

The read and write operations work as follows. Each replica of the data has
a version number associated with it, which is initialized to .0. When a transaction
performs a read or a write operation on the replicated data, it first broadcasts a
request for votes to all the nodes. All nodes that receive this request reply to the
sender with the version number of their replica and the number of votes they possess.
The requester node collects these votes until it has received replies from a group of
nodes whose votes are equal to or more than required for the quorum. After acquiring
the quorum, the node can perform the operation.

For a read operation, the node checks the version number of all the replicas in
the read quorum that it has collected. Since each read and write quorum intersect, at
least one of these replicas will be the latest, and will have the highest version number.
Hence, the requester node reads the data from one of the nodes in the quorum that
has the highest version number.

For the read to work, it is essential that after a write operation, all nodes in the
write quorum have the latest copy of the data. In a write operation, the requester
node makes sure that all the nodes in the quorum are written using the latest value.
This may require reading values from some quorum members and writing them onto
others before performing the operation. After the write operation, all the replicas in
the write quorum will have the latest copy of the data.

The weighted voting approach can handle both site and communication failures,
without requiring a node to distinguish between them. If a requesting node is unable
to collect the quorum, then it cannot perform the operation, regardless of whether it
was unable to get the quorum due to node failures or due to network partitioning.
Under only site failures, read and write operations can be performed if the set of
nodes that are alive (and connected) have a total of votes that is greater than w. If
the number of votes is less than w, but more than r, then only read operations can be
performed. If they are less than r, then even read operations cannot be done.

Suppose the system partitions into two groups of nodes. Since w > v /2, at
most, one group can have the write quorum. Hence, updates can be performed in, at

274 CHAPTE;R 7 DATA REPLICATION AND RESILIENCY
7.4 VOTING

most, one partition, thereby disallowing situations where inconsistencies can result.
In the partition that has w votes, read operations can also be performed (as r < w).
However, the other partition will not even have a read quorum, since r +w > v. This
makes sure that only those read operations are allowed that can access the latest copy
of the data. In general, if the system partitions into multiple groups, the following
scenarios are possible:

1. One group has a read and a write quorum, and all other groups have neither
read nor write quorums. In this case, all activity is allowed in one group, while
no operations can be performed in others.

2. Some groups have a read quorum, but no group has a write quorum. In this
situation, read operations can be performed in many groups, but updates are
performed in none.

3. No group has even a read quorum. In this, no operation can be performed in
any group. This may happen if the groups are very small.

It is clear that weighted voting preserves consistency by disallowing situations
where inconsistencies can occur. The performance of voting clearly depends on
factors like vote assignment, read and write quorums, ratio of read and write
operations, etc. We will discuss some of these issues later in the chapter.

In a homogeneous system, frequently it is assumed that each node has one vote.
There are two extremes for quorum selection in this case. The first is read one and
write all, in which r is 1, and so w equals v (to satisfy r + w > v). In this case,
for reading, any node can be read, but an update must be made on all the nodes in
the system. If even one node has failed, update operations cannot be performed.
If an update is allowed, 'then when the failed node recovers, it may perform a read
openition (as r = 1), thereby giving outdated data to the requester. The second is
majority voting, where both rand w equal the majority of total votes (i.e., rv/21).
In this case, for both read and write operations, a majority of the nodes must take
part. If a network partitions, the majority group functions (if one exists), while the
others do not.

Example. Consider a system with six nodes A, B, C, D, E, and F, each with
one vote. Let w be 4 and r be 3; these satisfy the constraints on vote assignment. If
the node B fails but the rest of the nodes remain connected, then operations will be
performed in the rest of the node.s, as each node will be able to get a quorum of 4. If,
due to communication failure, the network partitions into two groups {A, B, C, D}
and {E, F}, then in the first group, both read and update operations can be performed,
while in the second group, no operation,is allowed. If the communication failure

•

partitions the s
operation will
either partition
{A, B} and {E

Hierarchical'
A majorp'

quorum for pe
Many scheme
structure and (
cost [AA89,]
called hierare
of nodes that
involves mult

In the mel

level tree. Tt
depth of the
of the tree, 0

groups, We a
number ofne
The number (
not the numt
i. The total r

A quoru!
defined as tt
be included
many of the
is included i

by ri (Wi)' r
quorum at a
at all levels
to specify tl

Suppose
1, and a wri
algorithm i~

if for all Ie"

l.n+

ESILIENCY 7.4 VOTING 275

ies can result.

d (as r < w).
-w > v. This

he latest copy

the following

: have neither

:group, while

Jrum. In this
[t updates are

performed in

ng situations
, depends on

Id and write
er.
has one vote.

read one and
In this case,
the nodes in

e performed.

:rform a read

'he second is

(i.e., rv/21).
es must take
:s), while the

P, each with
signment. If

tions will be
,rum of 4. If,

A,B,C,D}
eperformed,

ation failure

partitions the set of nodes into the groups {A, B, C} and {D, E, F}, then the read

operation will be permitted in both, but no update operation will be permitted in
either partition. If nodes C and D fail and partition the remaining nodes into groups

{A, B} and {E, F}, then no operation of any kind will be permitted in either group.

Hierarchical Voting
A major problem with majority voting is that the number of nodes required in a

quorum for performing an operation increases linearly with the number of replicas.

Many schemes have been proposed recently which arrange the nodes in a logical

structure and define the quorum based on that in order to reduce the communication
cost [AA89, Kum91a, LG90, CAA90a). We will now discuss one such scheme,

called hierarchical voting [Kum91a]. The hierarchical method reduces the number

of nodes that must be in a quorum by introducing a multiple-level algorithm that

involves multiple rounds of voting.
In the hierarchical approach, the set of nodes is logically organized as a multip1e­

level tree. The root level is level 0, and the leaves exist at level m, where m is the
depth of the tree. The physical copies of the object are stored only at the leaves

of the tree, or at level m. The higher-level nodes of the tree correspond to logical

groups. We assume that all nodes at a level have the same number of children. The
number of nodes (each representing a logical group) at level 1 is represented by li.

The number of subgroups of a node at level i is represented by li+I. Note that h+1 is

not the number of nodes at level i + 1, but the number of children of a node at level

i. The total number of nodes at leveli + 1 will be II * l2 * ..,* li * li+1.

A quorum is associated with each level. A read (write) quorum at a level i is

defined as the number of subgroups of a node in the level i - 1 quorum that must
be included in the quorum to obtain a read (write) access to the group. That is how

many of the h nodes must be included in the quorum for each level i - 1 node that
is included in the level i - 1 quorum. The read (write) quorum at level i is denoted

by ri (Wi). Note that the definition is recursive, and hence the process of acquiring a
quorum at a level will be recursive. A quorum at level 1 implies quorum collection

at all levels right down to level m. Hence a quorum consensus algorithm just needs

to specify the quorum requirements at level 1.
Suppose that a quorum consensus algorithm requires a read quorum of rl at level

1, and a write quorum of WI at 1eve1l. It has been shown that this quorum consensus

algorithm is correct (i.e., it will provide write-write and read-write mutual exclusion)

if for all levels i = 1,2, ... , m,

276 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.4 VOTING

The reason for the correctness is as follows. At level I, the conditions ensure
that any read and write quorums will have at least one node in common at level I. At
level 2, when a quorum is collected in the subgroups of this common node, again the
conditions will ensure that there is at least one node in common. This will continue
all the way down to level m, and at least one physical copy (Le., leaf node) will
be common to the two quorums. Hence, once the quorums at each level are fixed
(satisfying the conditions given above), then a read operation must collect a quorum
Of'l (WI) of level 1 nodes. The recursive definition of a quorum, then, ensures the
consistency. An algorithm for collecting the quorum is given in [Kum91a).

It is clear that with this approach, for a read operation, for each node in the
quorum at levell, '2 nodes will be needed in the quorum, and for each node at level
2, '3 nodes will be needed in the quorum, and so on. Hence, the total number of
physical copies in a read quorum is n *'2 * ... *,m, and the total number of physical
copies in a write quorum is WI * W2 * ... * Wm .

If each Ii is kept as 3 (an algorithm is given in [Kum91a) to organize a given set
"c 0 ,A ~ '2. of nodes into a multiple-level tree with Ii as 3), then the depth of the tree is log3(n),
"j ,~ where n is the total number of replicas of an object. The total number of physical

copies that are finally read are 2Iog3 (n), which is equivalent to nO.63 • That is, for
an operation with a hierarchical voting method, only nO.63 replicas need to be read,
whereas in majority voting, r(n + 1)/21 number of replicas will be read. Clearly,
for higher values of n, there will be a reduction in the number of copies to be read.
However, the cost for this is that the quorum collection process requires log3(n)
rounds, whereas it requires only one round in majority voting.

Example. Consider a collection of 27 replicas organized in a three-level
hierarchy, as shown in Fig. 7.3 [Kum91a); in this,ll, l2 and l3 are 3 each. There
are various read and write quorums possible that will satisfy the constraint at each
level that 'i + Wi > 3. For different quorums, a different number of leaf nodes
are eventually read. Some of the different possible combinations of quorums and
the number of copies that are read or written are shown in Table 7.1 [Kum91a) (in

No. '1 WI '2 W2 '3 W3 R W
1. 1 3 1 3 1 3 I 27
2. 1 3 1 3 2 2 2 18
3. 1 3 2 2 2 2 4 12
4. 2 2 2 2 2 2 8 8

Table 7.1: Possible quorums

the table, the last two columns, Rand W, represent the total number of copies read

or written).]
quorum can t
the write que

Besides 1
approach pre
The propose
nodes. The c
a quorum, aI
If some of tI
nodes. Hene
O(N) to O(

The teet
incurred in I

IFI, whichi!
IFllm. The
that any of t]
and write ql
The quorurr
andmaximt
these, are SI

The mIA

weighted v(
assignment
and write q

:ESILIENCY

ditions ensure
1 at level 1. At
lode, again the
; will continue
~af node) will
level are fixed
llect a quorum
:fl, ensures the
191a).

h node in the
1 node at level
,tal number of
ler of physical

7.4 VOTING

(27 Physical Copies)

Figure 7.3: Hierarchical voting example

277

ize a given set
ree is 1083 (n),
er of physical
. That is, for
~ed to be read,
read. Clearly,
ies to be read.
luires log3(n)

a three-level
I each. There
straint at each
of leaf nodes
quorums and
[Kum91a) (in

)f copies read

or written). Note that if the read and write quorums are set at 2 each, then a write
quorum can be collected with as few as 8 copies. With the weighted voting technique,
the write quorum is at least 14. Also, note that Rand Ware often less than 27.

Besides hierarchical voting, other variations of voting have been proposed. The
approach proposed in [AJ92) aims to reduce the communication overhead of voting.
The proposed method divides the set of nodes into logical groups of intersecting
nodes. The cardinality of each group is ,j2N (for a N node system). For collecting
a quorum, a node first needs to communicate only with the members of its own group.
If some of these nodes have failed, the node may need to communicate with other
nodes. Hence, the cost of communication, when no failures occur, is reduced from
O(N) to O(~).

The technique presented in [JA92) aims to reduce the storage overhead that is
incurred in replicating the data on all the nodes. In this approach, a file of the size
IF I, which is to be replicated, is encoded and then broken into n parts, each of the size
!FIlm. The n parts are then stored on different nodes. The coding sch~me is such
that any of the m parts of the file are sufficient to reconstruct the entire file. The read
and write quorums have to be redefined when a file is coded and split in this manner.
The quorum requirement is not straightforward and the minimum sufficient quorum
and maximum necessary quorums, as well as the read and the update algorithms with
these, are specified in [JA92).

The multi-dimensional voting (MD voting) approach is a generalization of
weighted voting which offers more flexibility [CAA90b). In MD voting, the vote
assignment to each node is a k-dimensional vector ofnon-negative integers. The read
and write quorum requirements are also k-dimensional vectors. Each dimension of

278 CHAPTER 7 DATA REPLICATION AND RESILIENCY
7.4 VOTING

the vote and quorum assignment is similar to regular voting and can be combined in
many ways, making MD voting more powerful and flexible. In addition, a number p
is defined 1 :s p :s k, which specifies the number of dimensions for which a quorum
must be satisfied. Hence MD voting requires that in a dimension, the number of votes
required must be greater than or equal to the quorum requirement for that dimension,
and this should be satisfied for p different dimensions. A MD voting algorithm can
therefore be characterized by the number of dimensions it has and the number of
dimensions in which a quorum is needed, and is represented by M D(p, k). A key
issue in MD voting is how to select the quorum values (it is not always the majority)
and the value of p. Methods for selecting these are discussed in [CAA90b].

7.4.2 Dynamically Adaptive Methods

By nature, the static voting methods do not adapt to changes in the system due to fail­
ures, For example, with weighted voting, if due to repeated partitioning, the system
breaks into small groups, no group will be allowed to perform (update) operations.
The reason for this is that weighted voting always requires that the number of sites
necessary for performing an operation is the majority (if majority voting is being
used) of the total number of sites in the system. So, if a system partitions with one
group as the majority group, and if this group further partitions, then no group may
have the majority. In this section, we will study some approaches that generalize
the weighted voting strategy to avoid this problem of repeated partitioning. These
approaches adapt the voting strategy to changes in the system by changing the voting
parameters.

Dynamic Voting .
Dynamic voting is different than the majority voting scheme in that for an update

it requires a majority of the copies that are accessible at the time of the update. By
this, it solves the problem caused by repeated partitioning. There are two slightly
different approaches that have been proposed for dynamic voting [JM87, Dav89].
The discussion here is based on the method proposed in [JM87], which considers a
system in which each node is assigned one vote.

For each copy of the data di at node i there is a version number V Ni (initialized
to zero), which counts the number of successful updates to di. The current version
number of the data d is the maximum taken over the version number of all replicas
of d. A replica di is said tO,be current if its version number is the same as the
current version number of d. A group is said to be a majority partition if it contains
a majority of the current copies of d.

With each copy di is also associ~ted another integer called the update sites

cardinality, S
recent update
Whenever a c
of d which WI

With dyn
partition. The
Consider the
the nodes it (
cardinality. I
The node detl
its own versil
also determil
number ofn'
maximumuI
is rejected. l

a majority aJ

update sites
update are s

Clear!
do not for
to preserv
operation
that do nc

---'----.....o...-..o.--------- rlIn..__.2

~ESILIENCY 7.4 VOTING 279

e combined in
In, a number p

hich a quorum
1mber ofvotes
lat dimension,
algorithm can
he number of
(p, k). A key
; the majority)
\90b].

~m due to fail­
19, the system
e) operations.
1mber of sites
Jting is being
ions with one
110 group may
lat generalize
oning. These
ing the voting

for an update
Ie update. By
~ two slightly
.187, Dav89].
h considers a

IIi (initialized
!rrent version
)f all replicas
same as the
if it contains

update sites

cardinality, SCi, which reflects the number of sites that participated in the most
recent update to di. Initially, SCi is set to the total. number of sites in the system.
Whenever a copy di is updated, then SCi is set to equal the total number of copies
of d which were updated during this update.

With dynamic voting, a site can perform an update if it belongs to a majority
partition. Therefore, a site has to first determine if it belongs to a majority partition.
Consider the case where site 1 wants to perform an update operation. It requests all
the nodes it can communicate with to send their version numbers and update sites
cardinality. Let the nodes which respond to the request of node 1 be node 2, ... , m.
The node determines the maximum version number from all the responses it gets (and
its own version number). This version number may be the current version number. It
also determines the maximum update sites cardinality from'all the responses. If the
number of nodes which have the maximum version number is less than half of the
maximum update sites cardinality, this set does not form a majority and the operation
is rejected. Otherwise, the set of nodes having the maximum version number form
a majority and the update is performed on all of them. The version number and the
update sites cardinality of the nodes is also updated. The actions performed for an
update are shown in Fig. 7.4.

M = max{V Ni : 1 ::: i ::: m} (an integer)
1= {i: VNi = M, 1::: i::: m} (a set)
N = max{SCi : i E I} (an integer)

if III ::: N /2 then reject the operation
else

for all sites in I do
perform the update

VNi = M + 1
SCi = III

Figure 7.4: Performing an update with dynamic voting

Clearly, dynamic voting will permit operations to be performed in groups that
do not form a majority of the total nodes. Once it allows operations in such groups,
to preserve consistency, it has to also ensure that no further group can perform any
operation without including any node from this group. That is, if there are groups
that do not currently form a majority group and no operation is being performed in

Figure 7.5: Updating state dynamic voting

M = max{V Ni : 1 S i ::: m}
1= {Aj : VNj = M, 1 ::: j ::: m},

N = max{SCk : k E I}
if II I ::: N /2 then the node i cannot update its state
else

Get state from a node with a current copy

Set V Ni to M ."
Set SCi to(+V 1'1 (

Example. Let us illustrate this approach by an example [JM87]. Suppose there are
five nodes A, B, C, D, and E which have copies of a data d and which initially
form one partition. After nine update operations on d, each of the five copies
will have a version number of 9 (reflecting nine update operations), and an update
sites cardinality of 5 (since there are five nodes in this partition). Now suppose
that the communication network fails and partitions this group of nodes into two
groups {A, B, C}, and {D, E}. If A gets another update operation, it will be able to
communicate only with Band C. Since these three nodes form a majority partition,
an update is performed on all three. After this operation, the state of the different
copies is [JM87]:

Let us now (
E} join, forn

as no nod
will violate

dynami,

using dy
Since tht

allC)WeCl, tt
sites c

inconsiste
same Sl

operati()ns, the)
say, at E

contam on]
hence the o'

data. It s
thatcurre

A can c
nUI11ber of the rna
becomes 3 (as or

stay the sar
{A,e

perforn
number

(a~

par1jtlOn. Afl

CHAPTER 7 DATA REPLICATION AND RESILIENCY280

them, rejoining of these groups may form a group which may even have a majority
of the total nodes in the system. Even in this case, this group cannot be allowed
to perform operations (or it cannot be allowed to form the majority group) until it
reconnects with the group that has the current copies.

Suppose after the joining of groups, a site i realizes that it has a copy that is not
current. First, it has to "catch up" and update its state. A node is allowed to update
its state if, and only if, it belongs to a majority group. Suppose that node 1 can
communicate with sites 2, ... , m. The copy of the node 1 is not current if its version
number is less than the version number of some site in the group {2, ... , m}, or if
it has the highest version number and the set of nodes that have the highest version
number do not form a majority partition. If node 1 realizes that its version number is
not current, in order to "catch up" it has to perform some actions. First, it determines
that the group it belongs to forms a majority group, since only in that situation it can
update. If it is a part of a majority partition, it updates by requesting the missing
updates. The actions for updating the state are shown in Fig. 7.5.

------v-­if

~ESILIENCY

ave a majority
lot be allowed
group) until it

7.4 VOTING

VN:
SC:

A B
10 10
3 3

C D E
10 <} 9
3 5 5

281

Since A can communicate only with Band C, after the operation, the version
number of the majority group becomes 10, and the group's update sites cardinality
becomes 3 (as only three nodes perform the update). The state of the other two
nodes stay the same. Suppose that the majority partition further partitions, forming
two groups {A, C} and {B}, and A gets an update operation. With weighted voting,
A cannot perform this operation, since {A, C} together do not form a majority of
the total number of nodes in the system. However, they do form a majority of the
current copies (as there are three current copies). Hence, 0perations are allowed in
this partition. After this operation, the state of the system will be [JM87]:

opy that is not
Iwed to update
lat node 1 can
I1t if its version
, ... ,m},orif
dghest version
sion number is
t, it determines
situation it can
19 the missing A C

VN: 11 11
SC: 2 2

B D E
10 9 9
3 5 5

Jpose there are
which initially
:he five copies
and an update
Now suppose

ilodes into two
will be able to

jority partition,
:>f the different

Let us now consider the joining of groups. Suppose that the groups {B} and
{D, E} join, forming a new group {B, D, E}. No operation should be allowed in this
group, as no node in this group has the latest copy of the data, and allowing an oper­
ation will violate consistency (a read operation will be able to "see" old data). Let us
see how dynamic voting handles this. Suppose that D wants to update a copy of the
data by using dynamic voting. It will find M is 10, and the set I contains only B, and

~ t. '$- N i0) Since the II I is not N /2, D is not allowed to update its state with others. If it
;:;:'1e>:- were allowed, then after the update, B, D, E will have a version number of 10, and

an update sites cardinality of5, which will give {B, D, E} a majority, thereby leading
to an inconsistency. So, even though group {B} has joined with {D, E}, each node
is in the same state as it was before joining. Hence, for the purposes of performing
operations, they are still treated as separate groups. If a request for an operation
comes, say, at B, it cannot perform that operation, since the set I which it will form
will contain only B, and N will be 3. So, the set I does not form a majority group
and hence the operation cannot be performed. This preserves the mutual consistency
of the data. It should be clear that if a group is formed by joining a group with the
group that currently forms the majority group, the new group will also have a majority.

Dynamic Reassignment of Votes
Now let us discuss another dynamic technique by which the availability loss

due to partitioning can be reduced. The approach of dynamic voting is to make the
majority partition the set of total nodes in the system, so that it can handle further

282 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.4 VOTING

partitions. A somewhat different approach is to change the votes of the node in the
majority partition such that the loss of nodes is properly compensated and further
partitioning can be handled. This is the approach of dynamically reassigning votes
[BGS86].

The first approach for reassigning votes is the overthrow technique. In this
technique, after a partition or a failure, for each node x outside the majority group,
there will be one node in the majority group that supplants x, such that loss ofx is not
felt. Consider a system in which only one node x has been partitioned from the rest,
and the votes ofx are v(x). Suppose that it is decided that the node a in the majority
group is to supplant x. This decision can be made by simply ordering the nodes and
selecting the highest node in the majority partition. The new votes of a have to be
such that they cover the voting power of a before failure, plus the voting power of x,
plus the increase in the majority caused by the increase in the total number of votes.
If a increases its votes by 2v(x), the total number of votes will also increase by this
amount, and the majority will increase by v(x). Since the new votes of a provide
the votes for x, as well as this increase in the majority, it can be shown that all the
majority groups that used x can be formed by using a instead. The side effect of
supplanting x is that node a becomes "more powerful," as it has more votes now and
will be needed more often in forming majority groups.

The second method for dynamically reassigning votes is the alliance technique.
In this, instead of supplanting a node x by one node, a group of nodes in the majority
partition are used. If there are N nodes in the majority partition, a node x can
be supplanted by assigning r(2v(x)/N)l extra votes to each node. Since we can
assign surplus votes, another way is to assign each node 2v (x) extra votes, or we can
assign each node v (x) votes, if the total number of nodes is more than two. Other
distribution methods are also possible.

Now consider what happens when the node x rejoins the majority group. Clearly,
something needs to be done, otherwise x will get "marginalized" and its votes will
be reduced relative to the votes of other nodes. One way to avoid this is to have each
node relinquish the extra votes it acquired because ofx, after x rejoins. To implement
this would require that each node keep track of how many votes it acquired when
some node was excluded. Another method is to increase the vote of x when it
rejoins. This method will continue to increase the vote assignment, and finally all
nodes have to revert back to their original assignment to avoid making the size of the
vote unmanageable.

Example. Consider a system with four nodes and initial vote assignment as
v(a) = 6, v(b) = v(c) = v(d) = 5 [BGS86]. That is, the total votes are 21, and the
majority is 11. Assume that node a gets/disconnected from the rest, leaving {b, c, d}

as the majorit~

to get the extr:

The total vote!
each node get

The total vote
Suppose

reassignment
not a majorit:
will have a t(
by alliance tt
majority. As
a majority, bl

Besides (
havebeenpn
by failures.
weighted VOl
of nodes), n
node fails.]
approach, th
only one cOl
some copy c
mode. In th
both read aJ

of read opel
works only

The me
weighted V(
the same gl
failed node
read reque~

participate
it must can
in a read q\
with weigt

---------------------",.,,----

ESILIENCY

p

7.4 VOTING 283

Ie node in the
:d and further
'signing votes

ique. In this
ajority group,
ass ofx is not
from the rest,
1 the majority
the nodes and
'a have to be
.g power of x,
nber of votes.
crease by this
of a provide

m that all the
side effect of
rotes now and

:ce technique.
1 the majority
:l node x can
Since we can
tes, or we can
n two. Other

·oup. Clearly,
its votes will
; to have each
fo implement
;quired when
of x when it
nd finally all
:he size of the

ssignment as
re 21, and the
ving {b, c, d}

as the majority group with 15 votes. Using the overthrow technique, assuming b is
to get the extra votes, the new vote assignment will be:

v(a) = 6, v(b) = 17, v(c) = v(d) = 5.

The total votes are now 33, and the majority is 17. With the alliance technique, where
each node gets v(x) extra votes, the final vote assignment is:

v(a) = 6, v(b) = v(c) = v(d) = 11.

The total votes with this reassignment are also 39, and the majority is 20.
Suppose now that node c separates from the group {b, c, d}. If no vote

reassignment was done, then the group {b, d} will have a total of 10 votes, which is
not a majority. However, with reassignment by the overthrow technique, this group
will have a total of 17+5=22 votes, which forms the majority. In the reassignment
by alliance technique, the votes of this group are 11 +11 =22, which also forms the
majority. As we can see, in this situation, without reassignment, no group will have
a majority, but with reassignment, one group does have a majority.

Besides dynamic voting and dynamically reassigning votes, many other methods
have been proposed that try to adapt the voting system to changes in the system caused
by failures. The missing writes approach tries to improve the read performance of
weighted voting [ES83]. In weighted voting, if r is 1 (and w is equal to the number
of nodes), read performance is good, but then updates are stopped as soon as one
node fails. If r (and w) are a majority, then the read performance is poor. In this
approach, the system works in two modes. In the normal mode for a read operation,
only one copy is read (i.e., r is 1), and for a write operation, all copies are updated. If
some copy cannot be accessed in a write operation, then the system runs in the failure
mode. In the failure mode, the missing-writes approach works like majority voting;
both read and write operations require a majority. By doing this, the performance
of read operations is improved when the system has no failures. Again, this method
works only if nodes fail or if node and communication failures can be distinguished.

The method of voting with ghosts tries to improve the write availability of
weighted voting [RT88]. In this approach, if a node fails, a ghost is started within
the same group as the failed node, and is assigned the same number of votes as the
failed node. A ghost is a process without storage. Therefore it cannot reply to a
read request, and so does not participate in a read quorum. Ghosts are allowed to
participate in a write quorum. The write operation has an additional restriction in that
it must contain at least one non-ghost copy. Since a ghost is not allowed to take part
in a read quorum, the intersection of a read quorum with a write quorum (recall that
with weighted voting, a read quorum must intersect with every write quorum) can

284 CHAPTER 7 DATA REPLICATION AND RESILIENCY
7.4 VOTING

only contain non-ghost copies. This ensures that the read operation will get the latest
data. When a node comes back up, it replaces the ghost only after it has obtained the
latest data. This can be done by the ghost of the node acquiring a read quorum and
then reading the latest copy and installing it on the recovered node.

Another technique is to use the regeneration ofobjects [PNP88]. In this method
configuration data about the replicated data is kept in a directory, which is itself
replicated. If a node fails, its effect is not felt in a read operation. However, if in a
write operation the required quorum is not obtained, then new copies of the data are
created on different nodes and the configuration data is updated. In this manner, the
degree of replication is maintained and the change in location of replicas is reflected
by properly maintaining the configuration data. The method of available copies
[BG84], and voting with witnesses [Par86] are similar.

7.4.3 Vote Assignment

In a voting method, an update is performed on a group of nodes. The groups of
nodes that can be formed for an operation are such that they always intersect with
each other.. This ensures that if an update is to be performed in a group, then no other
group is performing updates. This also ensures that there is a write-write mutual
exclusion. The strength of a voting algorithm lies in the fact that it is able to support
mutual exclusion without communication between nodes. A majority voting strategy
defines a set of groups of nodes, such that each group has a majority of votes.

The performance of a voting system, particularly when network partitioning
occurs, will clearly depend on the assignment of votes to different nodes. Consider
the example of a system consisting of four nodes: a, b, C, and d. If we assign one
vote to each node, then ,the possible groups for performing an update are:

{{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.

That is, these are the groups whose votes add up to a majority of votes (Le., at least
three out of four nodes). Now consider an assignment that gives a two votes and
the rest one vote each. The majority is still three votes, so the groups that have a
majority are:

{{a, b}, {a, c}, {a, d}, {b, c, d}}.

This set of groups is clearly preferable to the previous grouping, as the system can
continue to perform updates (at least in one group) in all the groups of the previous
grouping, as well as some more. For example, if after a partition, the groups are
{a, b} and {c}, then the latter set of groups will allow updates to be performed in one
group while the former will not allow any updates.

This examp
critically on the
whether update
operation can b
of votes. A sys
steady-state pr<
to assigning vc

Using Coterie
Here we d

groups that ca
get a set of gr<
majority of vo
a set of group
compose the s

l.GESi

2. If G, H

3. There E

The second c(
minimality. I
group and is

A coterie
a group in R
Sis nondom.
consequentl~

the example
it was superi
coteries. FOl

Now let
A vote assis
the number
TOT(v) iS 1

is defined a
The set of f

assignment

ESILIENCY 7.4 VOTING 285

1 get the latest
s obtained the
d quorum and

n this method
vhich is itself
)wever, if in a
)f the data are
ls manner, the
as is reflected
Ii/able copies

'he groups of
intersect with
then no other
·write mutual
ble to support
oting strategy
f votes.
;: partitioning
les. Consider
ve assign one
il'e:

, (i.e., at least
NO votes and
s that have a

e system can
,the previous
:e groups are
e>rmed in one

This example clearly shows that the reliability of a voting-based system depends
critically on the vote assignment. Ifpartitions occur,- vote assignments will determine
whether updates are allowed or not. We say that a voting system has halted if no
operation can be performed on any node, that is, there is no group that has a majority
of votes. A system is up otherwise. The goal of vote assignment is to maximize the
steady-state probability that the system is up. Here we will discuss some approaches
to assigning votes in a majority voting system.

Using Coteries
Here we discuss an approach to vote assignment by enumerating the possible

groups that can be formed by majority voting [GB85]. By a vote assignment we
get a set of groups (where each group is a set of nodes), such that each group has a
majority of votes. In addition, the intersection of any two groups is non-null. Such
a set of groups is called a coterie [GB85]. Formally, if U is the set of nodes that
compose the system, then a set of groups S is a coterie if:

1. G E S implies that G is not empty and is a subset of U.

2. If G, H E S, then G and H must have at least one node in common.

3, There are no G, H E S such that G c H.

The second condition is called the intersection property, and the last condition ensures
minimality. For example, if {a, b} is a group, then clearly {a, b, c} will also form a
group and is not included in the coterie.

A coterie R is said to dominate another coterie S, if for each group in S, there is
a group in R that is its subset. If there is no coterie that dominates a coterie S, then
Sis nondominated (ND). If R dominates S, then clearly R is preferable over S, and
consequently we want to avoid considering it while deciding the vote assignment. In
the example given above, the second coterie dominated the first one (which is why
it was superior). Hence, for vote assignment purposes, we only need to consider ND
coteries. For the remainder of the discussion, a coterie will mean ND coteries.

Now let us discuss vote assignments. Let U be the set of nodes in the system.
A vote assignment is a function v : U -+ N (N is nonnegative integers) and v(a) is
the number of votes assigned to a node a. For a vote assignment v, the total votes
T OT(v) is the sum of votes for all the nodes in the system, and the majority M AJ(v)
is defined as TO[<V) + 1, if TOT(v) is even, and as TOTiv)+l if TOT(v) is odd.

The set of majority groups (i.e., groups, each having a majority of votes) of a vote
assignment v is Z, where:

Z = {GIG ~ U and L v(a) ~ M AJ(v)}.
aEG

286 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.4 VOTING

The minimal elements of Z (Le., those groups having no subset in Z) form a coterie,
and are called a coterie corresponding to v.

Now we can define what similar vote assignments are. Two vote assignments are
similar if, and only if, their corresponding coteries are the same. Hence, in a system
with an odd number of nodes, a vote assignment that gives 1 vote to each node is
similar to another vote assignment that gives 3 votes to each node.

It has been shown that if the number of nodes in the system is five or less, then
for all possible coteries there is a vote assignment. That is, for any coterie S, there is
a vote assignm.ent v whose corresponding coterie is S. Hence, one possible method
for selecting the best vote assignment (for a system with five or fewer nodes) is to
first enumerate all possible coteries. An algorithm for enumerating coteries for a
system is given in [GB85]. Once the coteries are enumerated, select the coterie that
yields the best reliability for the given system, that is, select the one in which the
probability of the system being operational is the highest. Finally determine the vote
assignment that corresponds to this coterie.

To determine the vote assignment that corresponds to a given coterie, the coterie
can be converted into a set of linear equations. Since each group in the coterie must
have a majority of votes, for each group G we get, LaEG v(a) 2: MAJ(v). If a
solution exists, then it can be determined by solving these inequalities. If no vote
assignment exists that corresponds to a coterie, then the inequalities will lead to a
contradiction.

If the number of nodes is more than five, then there exist coteries with no vote as­
signment corresponding to them (though there exists an MD voting that corresponds
to it [CAA90b)). Hence, selecting a vote assignment by selecting a corresponding
coterie will not be straightforward. Furthermore, the number of different possible

vote assignments in a system with n nodes is 2n2 [GB85], and the number of coteries
generated is more than this according to the enumeration algorithm. Hence, for large
systems, the approach of enumerating all the coteries for evaluation is of limited use
for selecting vote assignments.

Heuristics for Vote Assignment
Another approach to selecting the vote assignments is not to try for the very

best, but to use some heuristics that may suggest the best vote assignment or a vote
assignment that is close to the best. Here we describe some heuristics that have been
proposed [BG87]. A vote assignment is uniform if each node gets the same number
of votes, and if the number of nodes is odd. This means that each node is assigned
one vote. If the number of nodes is even, then one node has two votes, while the rest
have one vote each. A singleton assignme~t is one in which all the votes are assigned

to a single nodi
votes. A single

Heuristic I.
the links incidc:
the votes assigl
with most vote

Heuristic J

reliability of i
multiplied by t
the total numb

Heuristic 1
to exist, and a:
reliability and
are first remo'
biconnected C1

a subgraph in
that is, remov
The biconnecl
of these, the a:
as the vote aS1

Example.
graph shown i
For this grapt

to a single node, that is, one node has one node and the remaining nodes have zero
votes. A singleton assignment makes the system similar to a primary site system.

Heuristic 1. For each node i, multiply its reliability by the sum of reliabilities of
the links incident upon i. Round the number obtained, and this number represents
the votes assigned to the node i. If the total number of votes is even, then the node
with most votes gets one extra.

Heuristic II. For each incident link to node i, multiply its reliability by the
reliability of its other end-point node. These products are summed and finally
multiplied by the reliability of i to get the votes assigned to i. Rounding and making
the total number of votes odd is done in the same manner as in Heuristic 1.

Heuristic III. This heuristic attempts to find a cluster of nodes that is most likely
to exist, and assign votes only to it. A link is considered 'weak if the product of its
reliability and the reliability of one of its end points is less than 0.5. Weak links
are first removed, which may partition the network. From this reduced graph, the
biconnected components are detennined. A biconnected component of a graph is
a subgraph in which there are at least two paths from any node to any other node,
that is, removal of one node cannot cause the subgraph to become disconnected.
The biconnected components are assigned votes separately using Heuristic II. Out
of these, the assignment that maximizes the probability that the system is up is taken
as the vote assignment.

Example. Let us illustrate these heuristics by an example [BG87]. Consider the
graph shown in Fig. 7.6(a), which also shows the reliabilities of the nodes and links.
For this graph, Heuristic I will result in the assignment:

1,ESILIENCY

fonn a coterie,

lssignments are
Ice, in a system
:0 each node is

ve or less, then
'terie S, there is
ossible method
rer nodes) is to
5 coteries for a
the coterie that
Ie in which the
ermine the vote

erie, the coterie
he coterie must
MAJ(v). Ifa
ties. If no vote
s will lead to a

lVith no vote as­
lat corresponds
corresponding

fferent possible

nber of coteries
-Ience, for large
s of limited use

ry for the very
lment or a vote
; that have been
e same number
ode is assigned
~, while the rest
tes are assigned

7.4 VOTING

61.0
b (0.5) c (0.8)

(a)

Figure 7.6: An example

v(a) =round(0.8(0.1+0.8)) =I
v(b) =round(0.8(0.8+1.0)) =I
v(c) =round(0.5(0.1+1.0)) =1

b

a

(b)
c

287

288 CHAPTER 7 DATA REPLICATION AND RESILIENCY
7.4 VOTINc

Heuristic II will give:

v(a) =round(0.8(0.5*O.l+0.8*0.8)) =0
v(b) =round(0.8(0.8*0.8+1.0*0.5)) =1
v(c) =round(0.5(0.1 *0.8+1.0*0.8)) =0

Heuristic III will first produce the transformed graph, which is shown in
Fig. 7.6(b). This graph has three biconnected components, each with a single
node. The three assignments for these three biconnected components are therefore
< 1,0,0 >, < 0, 1,0 >, and < 0,0, 1 >. The second and the third assignments
will result in a system reliability of 0.8, and so any of these can be chosen.

As enumerating all possible vote assignments is difficult for a system consisting
of six or more nodes, it is hard to evaluate the effectiveness of these heuristics for
such systems. For a system with five or fewer nodes, best vote assignment can be
determined by enumerating the coteries, and then determining the reliability of this
assignment. In experiments, it has been found that for such systems, one of the
heuristics provides the best possible reliability [BG87]. Also, for larger systems, in
many cases the heuristics give a vote assignment which offers a reliability close to
the best-known (through simulation) reliability.

The example above seems to suggest that singleton or uniform assignments may
frequently offer the best reliability. It has been shown that for homogeneous systems
where the reliability of nodes is the same and is greater than 0.5, if the links are
perfectly reliable (i.e., have a reliability of 1.0), then uniform assignment is better
than any nonuniform assignment [BG87]. It has also been shown that if the system
has two nodes, and the links are perfect, then both uniform and singleton assign­
ments yield the same reliability. And for a larger system with perfect links and a
node reliability greater than 0.5 (but less than 1~O), in general, uniform assignment is
better than singleton assignment. Another heuristic has been proposed in [Kum91 b],
which uses a randomized algorithm for vote assignment.

An Integer Programming Approach
Another approach for assigning votes is based on integer programming. For a

network, first the top k groups, are determined (perhaps using simulation), where k
is a parameter and is chosen so that most of the likely groups are included. These
groups represent the most likely partitions in case of failures. With these k groups,
the vote assignment problem is formulated as an integer programming problem, with

rz

the objective
due to partiti

Thecrite
that are perfe
arrival of req
number of 0

rate of arriva
period of tin
select k grOl
time. The Sil
steady-state

With the
that these g
always be p
is to assign
the maximu
integer prog
[Ven92]. Vv
the system,
in a group (

The pro
majority of
Xi be a bin:
otherwise.
problem. T
Minimize:

subject to:

Since.
represent 1

a majority
average m

subject to:

2897.4 VOTING

k

L(Ti *Xd
i=!

Xi = 0 or 1 (i = 1, ... , k).

the objective of minimizing the average number of operations that cannot be satisfied
due to partitioning.

The criteria used for selecting the top k groups is the average number ofoperations
that are performed by the system per unit of time in a group. For a group, the rate of
arrival of requests is the sum of arrival rates at the nodes in the group. The average
number of operations performed in a group per unit of time is the product of the
rate of arrival of requests and the fraction of time (in the life of the system or a long
period of time) for which this group exists. For integer programming, we have to
select k groups that have the highest number of operations performed per unit of
time. The simplest way of determining these groups is through simulation, using the
steady-state probabilities for nodes/links to be up, as is done in [Venn].

With the top k groups known, the goal is to assign ~otes in such a manner
that these groups have a majority of votes. It is easy to observe that it may not
always be possible to assign a majority of votes to all the groups. Hence, the aim
is to assign votes in such a way that the groups getting a majority of votes have
the maximum average operations performed in them. This can be formulated as an
integer programming problem. Three different formulations have been proposed in
[Venn]. We will describe one formUlation here. Let n be the number of nodes in
the system, and Ti be the average number of operations performed per unit of time
in a group Gi.

The problem formulation is such that we get a vote assignment which assigns a
majority ofvotes to a subset of k groups for which the sum of Ti is the maximum. Let
Xi be a binary variable which is zero if group Gi has a majority of votes, and is one
otherwise. By defining Xi in this manner, we can formulate this as a minimization
problem. The integer programming model is:
Minimize:

Since Xi =0 represents the ith group getting the majority of votes, Ti * Xi will
represent the average number of operations lost due to the i th group not getting
a majority of votes. The objective function is trying to minimize the sum of the
average number of operations lost due to the groups not getting a majority of votes.

~SILIENCY

is shown in
with a single
are therefore

1assignments
)sen.

em consisting
heuristics for
nment can be
.ability of this
1S, one of the
er systems, in
bility close to

ignments may
rleous systems
f the links are
ment is better
t if the system
gleton assign­
~ct links and a
.assignment is
Iin [Kum91b],

mming. For a
ltion), where k
eluded. These
hese k groups,
:problem, with

290 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.5 DEGREE (

The first term in constraint (for a group Gi) is 1/2(L:f=1 v(j + 1) which represents
the majority of votes. The second term L:kEGi v(k) represents the votes assigned to
group Gi.

Case 1. When Xi is zero, the constraint will become

1 N2(I: v(j) + 1) - I: v(k) :5 0
j=l kEGi

which makes sure that the ith group will have votes greater than or equal to the
majority of votes.
Case 2. When Xi is one, the constraint becomes

The value of d should be such that when Xi is one, whatever the votes assigned
to group Gi are, the constraint is still satisfied. As the value on the left-hand side
will be, at the most, the majority of votes (since votes are positive), the value of d
is chosen so that it is greater than the possible majority of votes needed to satisfy
the constraint. This also means that the constraint allows a majority of votes to be
assigned to group Gi when Xi is one. We have to make sure that whenever Xi is
one, the ith group will not have the majority of votes. Since the objective function
is trying to minimize Ti *Xi, integer programming will always try to assign all Xi'S

as zero. According to Case 1, Xi =ameans that Gi gets the majority of votes. If it
is not possible to assign !he majority of votes to all the groups, then some Xi'S will
have to take the value one. The objective function will select a subset out of the k
groups so that the sum of Ti for these groups is the maximum, and it will assign the
corresponding Xi as zero. The constraint will force these groups to get a majority
of votes. All the other groups which have corresponding Xi as one will not get a
majority of votes, since the objective function would have assigned Xi as zero if it
could have gotten the majority of votes. To ensure that the constraint is satisfied
even when Gi does not have a majority (and votes assigned to group Gi can even be
zero), d must be greater than or equal to the majority of votes.

Example. Let us consider a three-node fully connected network, with each
component having a reliability of.0.9. Let the arrival rates of requests at all the nodes
be 200 per unit of time and let k =3. The top 3 partitions are {1,2,3}, {1,2}, and {2,3}
(the group {1,3} is equally likely to {1,2} or {2,3}). The fraction of total simulation
time for which these groups are present is/(found through simulation) approximately

0.7, 0.08, 0.08, I

of the groups pe
formulation will
Minimize:

subject to:

Solving thi~

gives a majorit)
is present in all
which will give

7.5 Degret

We have discm
focused only c
algorithm shou
to increase reli
failures occur i
increase as the:
replicas will be
of replication v

Since the ~

increases as the
will continue .
opposing force
of replication iJ
tends to decre~

of replication (
maximizes the
the primary sit

iESILIENCY 7.5 DEGREE OF REPLICATION 291

hich represents
Ites assigned to

Jr equal to the

votes assigned
~ left-hand side
. the value of d
:eded to satisfy
7 of votes to be
Nhenever Xi is
ective function
assign all Xi'S

Yof votes. If it
some Xi'S will
~et out of the k
will assign the
get a majority

~ will not get a
Xi as zero if it
lint is satisfied
G i can even be

ork, with each
at all the nodes
[1,2}, and {2,3}
otal simulation
approximately

0.7,0.08,0.08, respectively. The average number of operations performed in each
of the groups per unit of time is therefore 420, 32, {'Ind 32, respectively. The above
formulation will result in (choosing d to be 500):
Minimize:

420X1 + 32X2 + 32X3

subject to:

Solving this will result in a vote assignment of (0,1,0). This vote assignment
gives a majority of votes to all the three groups ({1,2,3},{1,2},{2,3}). Since node 2
is present in all the groups, it has given all the votes (l vote in this case) to node 2,
which will give a majority of votes to all the above groups.

7.5 Degree of Replication

We have discussed various techniques to manage replicated data. So far, we have
focused only on the correctness of approaches, that is, the replica management
algorithm should ensure a single-copy view. However, the goal of replication is
to increase reliability and availability by keeping the data accessible even when
failures occur in the system. It is clear that the reliability of a system will generally
increase as the number of replicas, or the degree ofreplication, increases, since more
replicas will be able to mask more failures. However, it is not clear how the degree
of replication will affect system availability.

Since the algorithms for replica management involve overhead which usually
increases as the number of replicas increases, it is unlikely that the system availability
will continue to increase as the degree of replication increases. There are two
opposing forces for the degree of replication: the increase in reliability as the degree
of replication increase tends to increase availability, whereas the increase in overhead
tends to decrease availability. In this section, we will study the effect of the degree
of replication on the system availability, and the optimum degree of replication that
maximizes the system availability. We will study the two most popular techniques:
the primary site approach and majority voting.

292 CHAPTER 7 DATA REPLICATION AND RESILIENCY
7.5 DEGREE (

7.5.1 Primary Site Approach

We first discuss the effect of the degree of replication on the availability of
the primary site approach. The discussion is based on the models proposed in
[HJ89b, HJ89a). Consider a network of N homogeneous nodes, each with a lifetime
that is exponentially distributed with the mean t. The sites are linearly ordered. At
the start, the first site is chosen as the primary site; all the other sites are specified
as the backups. The state ofthe primary site is periodically checkpointed on all the
backups with the rate c, and the time required for a checkpoint is k. The service time

for an operation on the data is exponentially distributed with the mean t, and the
inter arrival time of requests for operations in the system is exponentially distributed
with the mean 1/A.. If the primary site fails, all operations after the last checkpoint
are first redone by the new primary site in order to reach a consistent state. Let ~

be the time required for recovery. I/r is assumed to be much smaller than I/f. A
failed site is repaired and it rejoins the system after it is repaired. The repair service
is exponentially distributed with the rate 8.

It is assumed that the checkpointing cost is exponentially distributed, and the
primary site also checkpoints the state on itself. Let b be the expected cost of
checkpointing by the primary on a backup. The primary site checkpoints its status
on its backups, one at a time. Assuming that the cost of establishing a checkpoint is
the same at each node, we get the total cost of checkpointing as *= b x N.

The availability of this system, ex, is defined as the fraction oftime that the system
is available for serving user requests. The system can be in one of the two states: the
normal state or the idle state.

• Normal state: the .state in which at least one site is working. In this state,
the system performs three kinds of activities: operations, recovery, and
checkpoints.

- Operations: the primary site is available for serving user requests. Let
TN be the random variable representing the total time that the system is
operating.

- Recovery: the system is recovering from the primary node failure. Let
TR be the random variable representing the total recovery time of the
system.

- Checkpoints: the priinary site is checkpointing its status on the backups.
Let Tc be the random variable representing the total checkpointing time.

• Idle state: the state in which all sites have failed. In this state, all sites are

waiting to
variable re

The availabi
requests. If 0
occurs because
system operatic
0= E(T[)+E
variable. To cor
expected idle tit

E(T[). The sys
no site is alive.
are exponential
where the state

have PO = 1/2

It should be no

E(TR)' To con
during the peri
and the mean
period L is gi\!

is:

E(Tc). Thep
occurs during
c.((1 - po)L
checkpointin~

From the abo

o

ESILIENCY 7.5 DEGREE OF REPLICATION 293

lvailability of
s proposed in
with a lifetime
ly ordered. At
; are specified
nted on all the
Ie service time

~an 1, and the
j),

LIly distributed
ast checkpoint
lt state. Let ~

~r than l/f. A
repair service

buted, and the
peeted cost of
oints its status
Icheckpoint is
b x N.
that the system
two states: the

In this state,
recovery, and

~ requests. Let
It the system is

waiting to be repaired and no services can be provided. Let T[be the random
variable representing the total idle time.

The availability ex is the fraction of time that the system is available for user
requests. If 0 is the expected overhead, then ex = 1 - f. The overhead
occurs because checkpointing, recovering, and repairing are needed to make the
system operational. The expected overhead within the period L is given by
o = E(T[) +E(TR) +E(Tc), where EO represents the expected value of a random
variable. To compute the overhead within a large period L, we need to compute the
expected idle time, checkpointing time, and recovery time.

E(T[). The system is idle when all sites have failed. Let PO be the probability that
no site is alive. Since we assume that both the lifetime and the repair time of a site
are exponentially distributed, we can represent the system by a Markovian model,
where the state of the system is the number of working sites. For this model, we

have PO = 1/ L:f=o(t)k tr. Therefore,

It should be noted that the larger the N, the smaller is the PO.

E(TR)' To compute the total recovery time, we first determine the number of failures
during the period L. Since the system is in the normal state for (l - po)L seconds
and the mean time between failures is t, the total number of failures during the
period L is given by LO - po)f. Hence, the expected total time spent for recovery
is:

E(TR) = L(1 - po)f.
r

E (Tc). The primary site checkpoints its state at a rate of 1/c, and no checkpointing
occurs during recovery. Hence, the expected number of checkpoints during Lis:
c.(O - po)L - L(l-,.po)!). Therefore, the total time that the system is in the
checkpointing state is:

From the above equations, the overhead can be computed as follows:

0= poL + L(1 - po)f + (0 _po)L _ LO - PO)!) . :..
r r h

de failure. Let
:ry time of the

III the backups.
(pointing time.

te, all sites are

(
0- po)L - L(l7°)!)

E(Tc) = l/c x
1

h

294 CHAPTEl;l 7 DATA REPLICATION AND RESILIENCY
7.5 DEGREE (

The availability of the system is given by:

J c
ex = (1- po)(l- -)(1- -).

r h

The three terms in the expression for availability reflect the contribution of the
three overhead-generating activities on the system. If the idle time of the system
(reflected by po) or the checkpointing cost (l I h) or the recovery cost (1 / r) increases,
the availability decreases.

If a failure occurs, all the operations performed since the last checkpoint have to
be redone. As the number of operations performed between the two checkpoints is
A/c, on an average A/2c operations need to be redone. Hence, it takes an average of
2~c time to redo the requests since the last checkpoint. The recovery cost, ~, is equal

to 2~c' If the number of sites is fixed, the optimal checkpoint rate is determined by
differentiating this expression with respect to c and setting the result to zero. From
this we get:

A 1
----0
2f.Lc2 fh - .

Solving this equation, we get the optimal checkpoint rate as c* = K./ii, where K is
given by K = ,JAJI2f.L. Using this value of the checkpoint interval in the expression
for availability, we get the best availability with respect to checkpoint interval. Using
this, we can study the effect of degree of replication and find the optimal value of N
such that ex is maximized. The availability of the system with c*. can be written as:

(AM)ex = (1 - po) 1 - f(--) (l - K,JNb).
. 2f.LK

As N increases, PO decreases, thereby increasing availability. On the other hand,
increasing N increases the overhead ofcheckpointing, which reduces the availability.
Hence, there is some value of N which maximizes ex.

It is difficult to get the optimum degree of replication which maximizes ex by
differentiating the above equations and solving for N. A numerical computation is
needed to search the optimum value of N. We illustrate it by an example [HJ89a].

Example. A fault tolerant system has N identical nodes, each with a mean lifetime
of 600,000 seconds (approximately 1 week). The mean service rate of the system is
5 transactions per second (f.L = 5), the total arrival rate is 3 transactions per second (A

= 3), and the mean repair time is 50,000 seconds (l/o =50,000). When the primary
server is performing a checkpoint, it takes 500 milliseconds to copy its status to a
backup server (b=0.5). The availabilities are shown in Table 7.2. From the table, we

b

can see that this
However, the av
availability. He
may be chosen I

7.5.2 Major

Now we consid
of a majority v
system consisti
mean lifetime c
exponentially d
cause the netw
server. After re
is only one on­
discipline to re
with the mean

The systel'
working node~

be working in
on the voting
update). If th(
number ofwo
total failure o(
system has to
following two

tESILIENCY 7.5 DEGREE OF REPLICATION 295

tribution of the
: of the system
1/r) increases,

~kpoint have to
checkpoints is
s an average of

1 . 1;ost, r' IS equa

determined by
: to zero. From

jh, where K is
I the expression
interval. Using
mal value of N
be written as:

the other hand,
the availability.

laximizes a by
computation is
nple [HJ89a].

i mean lifetime
)fthe system is
IS per second (I­

len the primary
y its status to a
m the table, we

No. of Nodes Availability
1 0.92215
2 0.98684
3 0.99559
4 0.99719
5 0.99746
6 0.99742
7 0.99729
8 0.99713
9 0.99698
10 0.99682

Table 7.2: An example

can see that this optimal N is 5. Increasing N beyond 5 will decrease the availability.
However, the availabilities with N = 2 and N = 3 are only 1% less than the optimal
availability. Hence, N = 2 and N = 3 also provide near optimal availability, and
may be chosen due to practical considerations.

7.5.2 Majority Voting

Now we consider the issue of degree of replication and its effect on the availability
of a majority voting system, based on the model proposed in [HJ93]. Consider a
system consisting of N identical nodes, each having a replica of the data and with a
mean lifetime of 1/f. The average time to perform an operation on replicated data is
exponentially distributed with the mean t. It is assumed that the node failures do not
cause the network to partition. When a node fails, it is immediately sent to a repair
server. After repair, the node rejoins the system as a working node. Assume that there
is only one on-line repair server which uses the first-come-first-serve (FCFS) service
discipline to repair failed nodes, and whose repair time is exponentially distributed
with the mean t.

The system can perform operations as long as there are a sufficient number of
working nodes in the system. Let M be the minimum number of nodes which must
be working in order for the system to provide services. The threshold of M depends
on the voting algorithm used in the controller and the type of operation (read or
update). If the system uses a majority voting algorithm, M is equal to rif1. If the
number of working nodes is less than M, the system cannot provide services and a
total failure occurs. When a total failure occurs, all activities are suspended and the
system has to be repaired before any service can be resumed. The system has the
following two states:

Normal state: In this state, there are a sufficient number of working nodes to
provide normal services. Let TN be the random variable representing the
time the system is in the normal state. TN can also be interpreted as the life of
the system. Let E(TN) represent the expected value of TN.

296 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.5 DEGREI

The availa
available to pr
system is cycl
that the syste:
system is in t1

Failure state: In this state, the system encounters a total failure. All services are
suspended. Assume that negligible requests arrive when the system is in this
state. Let TF be the random variable that represents the time the system is in
the idle state.

To compute the E(TN) and the E(TF) of the system, define the system state
as the number of working nodes. The system is in state i when there are i nodes
working at that moment. With this, the state M - 1 represents a total failure of the
system; in this state, all activities are suspended except for repairing the failed nodes.
Define t(i, j) as the expected time for the system starting at state i and first visiting
state j.

There are two components in t(i, i-I). First, the system has to stay in state i
for Si time units. Then, a transition occurs. It may go to state i + 1 or to state i. If
it goes to state i-I, it reaches the goal. On the other hand, if it goes to state i + 1,
it has to take t U+ 1, i) time for the system to go back to state i again and then it
takes another tU, i-I) time for the system to reach state i - 1. The probability of
going to state i + 1 from state i is i.}+8' This can finally be written as a recurrence
equation (the details are given in [HJ93] and are omitted here):

teN, N -1) = Jf ,

t(i, i - 1) = i} + i} .tU + 1, i) for i = N - 1, . ", M.

The mean time to failure (MTTF) of the system is the duration between the time
that the system starts services and the time that the system fails. And the mean time
to repair of the system is the duration between the time that the system fails and the
time that the system is working again. From the definitions, the MTTF of the system
is equal to E (TN), and E (TN) is the expected time for the system to travelfrom state
M to state M - 1. Hence, we have E(TN) = t(M, M - 1), or:

MTTF = E(TN) = t(M, M - 1).

Using the above recurrence equation, t(M, M - 1) can be determined. It is
hard to obtain a closed-form SOlution from the recurrence equation. The recurrence
equation can easily be solved numerically to determine E(TN). The mean time to
repair (MTTR) is E(TF) = i.

The computal
From the

optimized wh
replication, f.
failure states
states increas
tolerance). Ir
hand, the fai
example, the
increases the
N increases .
to state N ­
words, incre
failure transi
the system i~

The valu
repair time 0

of fault tolel
the degree 0

tern availabi
transition ra
in the decre
replication)
the life of a
transition ra
the system ~

small numb

Examp
life of 30 d~

timesarenu

-------------_...-....-

) RESILIENCY 7.5 DEGREE OF REPLICATION 297

vorking nodes to
representing the

'eted as the life of

All services are
~ system is in this
~ the system is in

the system state
there are i nodes
)tal failure of the

: the failed nodes.
and first visiting

to stay in state i
I or to state i. If
>es to state i + 1,
again and then it
he probability of
n as a recurrence

,M.

)etween the time
Id the mean time
tern fails and the
TF of the system
travel from state

~termined. It is
The recurrence

be mean time to

The availability of the system, ex, is defined as the probability that the system is
available to processing requests at any time. As described in the previous section, the
system is cyclic, having a normal state and a failure state. Therefore, the probability
that the system is available to processing requests is the portion of time that the
system is in the normal state. In other words, the availability can be represented as:

E(TN) t(M, M - 1)

ex = E(TN) + E(TF) = t(M, M - 1) + i'
The computation of t(M, M - 1) is specified in the recurrence equation above.

From the definition of system availability, it is clear that system availability is
optimized when the MTTF is maximized. The MTTF is a function of the degree of
replication, N. For a majority-consensus voting system; the total number of non­
failure states is Nt 1. Therefore, when N increases, the total number of non-failure
states increases. That is, there are more failures that can be tolerated (degree of fault
tolerance). In this case, increasing N tends to increase the MTTF. But, on the other
hand, the failure transition rates between states also increase as N increases. For
example, the transition rate from state N to state N - 1 is Nf. Hence, increasing N
increases the failure transition rate from state N to state N - 1. Similarly, increasing
N increases the transition rates from state N - 1 to state N - 2, from state N - 2
to state N - 3, etc. In this case, increasing N tends to decrease the MTTF. In other
words, increasing N increases the degree of fault tolerance but also increases the
failure transition rates. Therefore, there is an optimal N such that the availability of
the system is maximized.

The value of the optimal N depends on the ratio of the life of a node and the
repair time of the repair server. If the ratio is very large and if N is small, the degree
of fault tolerance becomes a dominant factor. In this case, increasing N increases
the degree of fault tolerance and, hence, improves the system availability. The sys­
tem availability increases as N increases until N becomes too large and the failure
transition rates become dominant. At that point, any further increase of N results
in the decrease of system availability. This threshold point (the optimal degree of
replication) usually occurs at a large N when the repair time is small (compared to
the life of anode). On the other hand, if the ratio is small and N is small, the failure
transition rates become the dominant factor. Consequently, increasing N degrades
the system availability. Therefore, the optimal degree of replication in this case is a
small number.

Example. Consider a majority-voting system with each node having a mean
life of 30 days. The optimal degrees of replication of the system for different repair
times are numerically computed. Table 7.3 gives the optimal degrees ofreplication for

298 CHAPTER 7 DATA REPLICATION AND RESILIENCY 7.6 SUMMA]

various repair times. From the table, we find that the optimal N for system availability

Repair time (day) Optimal N Optimal MTTF Optimal ex
1 15 4794 0.999791
2 9 213 0.990735
3 5 85 0.965909
4 5 57 0.93429
5 3 45 0.9
10 3 30 0.75
15 3 25 0.625

Table 7.3: Effect of degree of replication in majority voting

is 15 when the repair time is 1 day. As expected, the optimal N decreases as the
repair time increases. If the mean repair time is greater than 5 days, the optimal N is
always 3 (since we are considering a majority-voting system, the minimum degree
of replication is 3).

Note that when the repair server takes 15 days to repair a failed node, the MTTF
of the system is shorter than that of a node (25 days vs. 30 days) and the availability
of the system is smaller than that of a node (0.625 vs. 0.667). In other words, when
the repair time is 15 days, using the voting approach for fault tolerance does not
improve the MTTF and availability of the system.

7.6 Summary

In this chapter, we have discussed the problem of making data resilient to failures
in the system. That is, J?1asking node and communication failures in the distributed
system to users in order to perform operations on data. Resiliency is supported
by replicating the data on multiple nodes. Since the goal is to mask failure, and
replication is a technique to support this, replication should be "hidden" to the users
of the data. That is, even with replication, it should appear that there is a single copy
of the data in the system, and one-copy serializability is maintained. There are two
basic approaches for managing replication. First is the optimistic approach, where
no restriction is placed on access to data. Consequently, ifpartition occurs, the copies
of the data object in different groups may become divergent. The second approach
is called the pessimistic approach, in which access to replicated data is controlled
such that inconsistency never re,sults, and single-copy serializability is preserved.

The goal of an optimistic approach is to resolve any inconsistencies that may
arise due to unrestricted processing during partitioning. This attempt to resolve
the inconsistencies is made after the g~oups rejoin, and is not always successful.

b

We have discl
this inconsiste
represents the 1

on the copy. 11
it means that
inconsistency
conflict situati

We have d
site approach,
one of the si!
designated as
primary site.
backups. If tJ
performing th
requests for oJ
communicati<
has the prima
cannot access
distinguish bt

The seCOl
the state mac
simultaneous
replica can Sl

and that one-(
sent to all the
nodes in the
the propertie
broadcast. A
copy of the d
by different 1

The thin
or an update
of votes fror
such that a !
update, and
That is, whe
can perform
the replicate
failures and

RESILIENCY 7.6 SUMMARY 299

stem availability

tal ex
791
735
909
~29

'I
5
!5

)ting

decreases as the
the optimal N is
ninimum degree

node, the MTTF
d the availability
her words, when
lerance does not

;ilient to failures
,n the distributed
lCy is supported
lask failure, and
den" to the users
~ is a single copy
j. There are two
'.lpproach, where
tCcurs, the copies
second approach
lata is controlled
y is preserved.
tencies that may
tempt to resolve
ways successful.

We have discussed one particular method based on version vectors for resolving
this inconsistency. With each copy of a file, a ver.sion vector is associated, which
represents the number of updates, originating at different nodes, which are performed
on the copy. If a version vector of a group dominates the version vector of another,
it means that one group has seen a subset of updates of another group and the
inconsistency is resolved easily. If no version vector dominates, it represents a
conflict situation. Conflict resolution is left to the user.

We have discussed three pessimistic approaches for replica control: the primary
site approach, the state machine approach, and voting. In the primary site approach,
one of the sites having the data is designated as primary, while the others are
designated as backups. All requests for the operations on the data are sent to the
primary site. The primary periodically checkpoints the·state of the data on the
backups. If the primary fails, one of the backups becomes the primary and starts
performing the operations. The single-copy serializability is preserved, since all the
requests for operations on the data are performed at a given time by only one node. If
communication failures cause the network to get partitioned, then the partition that
has the primary site is able to perform the operations on the data, while the others
cannot access the data. This requires that the nodes which are alive must be able to
distinguish between node failures and network partitions.

The second approach we discussed utilized active replicas. This is also called
the state machine approach. In this approach, all replicas of the data are kept
simultaneously active. A request for an operation is sent to all the replicas, and any
replica can service the request. To ensure that the replicas are mutually consistent
and that one-copy serializability is maintained, all the requests for operations must be
sent to all the replicas, and the different requests must be processed by the different
nodes in the same order. This ensures mutual consistency. One way to support
the properties of mutual consistency and one-copy serializability is to use atomic
broadcast. A request for an operation is atomically broadcast to all nodes having the
copy of the data. Atomic broadcast ensures that the different requests are processed
by different nodes in the same order. This approach works only for node failures.

The third approach we discussed was voting. In voting, for performing a read
or an update operation on the data, the requesting node has to first get a "quorum"
of votes from the nodes. The group of nodes that give the requester the quorum is
such that a group performing the read operation always has a node with the latest
update, and the read-write and write-write mutual exclusion property is supported.
That is, when a group is performing a read or an update operation, no other group
can perform an update operation. This property provides the single-copy view of
the replicated data. Since voting treats all failures uniformly, it can handle both site
failures and network partitioning and preserve data consistency. Voting algorithms

300 CHAPTER 7 DATA REPLICATION AND RESILIENCY PROBLEMS

can be static or dynamic. In static voting, all parameters for voting are fixed, while
in dynamic approaches, some parameters may be changed as failures and recoveries
take place in the system.

We have discussed some static voting algorithms. The first one is weighted
voting. In this, each copy of the object is assigned certain votes. A node wishing
to perform a read or a write operation must collect a read quorum of r votes or
a write quorum of w votes, respectively. The quorums are such that w is greater
than half of the total number of votes and r + w is greater than the total number of
votes. These restrictions ensure that any two write quorums intersect and any read
and write quorums intersect. One of the nice features of this approach is that it treats
node failures and communication failures uniformly; the weighted voting strategy
works even if the network partitions. A generalization of this approach that can
reduce communication overhead is hierarchical voting. In this, nodes are logically
organized in a hierarchy and quorums are collected at each level for an operation.

We discussed two different dynamic methods for voting. In dynamic voting,
an operation is allowed if it has a quorum of a majority of the previous majority
partition. In other words, if a partition occurs, the majority partition is taken to be
the "system." If a further partition occurs, a majority of the nodes of this system are
needed for an operation. On rejoining of groups, a node may update itself if it can
communicate with some member of the last majority group. The second approach
that we discussed is dynamic reassignmentofvotes. In this approach, if nodes fail, the
votes to the nodes are reassigned such that the effect of failed nodes is compensated.
One method of reassignment is to assign twice the votes of nodes that are not in the
majority partition to nodes in the majority partition. This way, the effect of nodes
that are in the minority partition is compensated.

The performance and'reliability of voting systems depend considerably on the
votes assigned to a node. We have discussed the problem of vote assignment, and
have discussed three approaches to it. The first one is based on coteries, in which all
possible groups that can be formed by vote assignment are assigned. This approach
is only useful for small systems. The second approach is the use of heuristics, and
we discussed a few different heuristics for vote assignment. The third approach we
discussed considers the most likely partitions and then formulates the vote assignment
problem as an integer programming problem.

These three replica-control approaches mask replication and failures by different
techniques. The primary site ap~roach masks replication by routing all requests to
one site. The active-replicas approach manages replicas by ensuring that all sites
get the requests in the same order, and hence all replicas are always equivalent, and
capable of servicing any request on the da;a. The voting approach masks replication
by ensuring mutual exclusion between groups performing the operations. The first

two approaches'
primary site app
can be distinguis
mutual exclusior
groups. Hence, i
can handle both.

Finally, we d
we continue to bl
so will the cost (
optimum degree
the optimal degr

We have ass:
is, we focused 0

by the use of reI
there can alway
a situation is ca
be needed after
be performed, tl
will have the m<
node to fail. We
the next chaptet
performed by th
for recovering f

Problems

1. What adc

2. Suppose
replica 01

At time:
are bein~

what con

3. One met
primary
on stable
uses two
checkpo;

1. What additional problems does data replication introduce?

Problems

2. Suppose there are four nodes - A, B, C, and D - in a system, each with a
replica of a file f. Suppose node B fails at time Tl' separating A from {C, D}.
At time T2, B comes back up and reconnects the network. If version vectors
are being used, under what conditions will there be no conflicts, and under
what conditions there will be conflicts?

301PROBLEMS

two approaches work well when only sites can fail, but no partitioning occurs. The
primary site approach can also be used under network partitioning, if partitioning
can be distinguished from site failures. Voting is a general approach which supports
mutual exclusion of operations without communication between nodes of different
groups. Hence, it treats both node failures and network partitioning uniformly, and
can handle both.

Finally, we discussed the issue ofdegree of replication. Clearly, in no system can
we continue to benefit by increasing replication. Though the reliability may increase,
so will the cost of managing the replicas. Hence, it is likely that there may be some
optimum degree of replication. We have discussed analytic models for determining
the optimal degree of replication for the primary site approach and weighted voting.

We have assumed throughout the chapter that some nodes are always alive. That
is, we focused on masking the failure of nodes and communication failures entirely
by the use of replication. Hence, the issue of recovery was not discussed. However,
there can always be situations where all the nodes in the network may fail. Such
a situation is called total failure. In such situations, some recovery activities will
be needed after the nodes recover from failure. However, before any recovery can
be performed, the most recent replica has to be obtained. The node that failed last
will have the most recent replica, and hence, this requires that we determine the last
node to fail. We will discuss this problem of determining the last process to fail in
the next chapter. Most of the recovery activities from a total failure will clearly be
performed by the last node to fail, after it recovers. We will not discuss the methods
for recovering from total failure.

are fixed, while
~s and recoveries

RESILIENCY

one is weighted
A node wishing
.m of r votes or
that w is greater
: total number of
ect and any read
ch is that it treats
j voting strategy
Jproach that can
des are logically
,r an operation.
dynamic voting,
revious majority
on is taken to be
)f this system are
ate itself if it can
second approach
I, if nodes fail, the
; is compensated.
hat are not in the
e effect of nodes

lsiderably on the
assignment, and

~ries, in which all
d. This approach
of heuristics, and
hird approach we
e vote assignment

ilures by different
ng all requests to
ring that all sites
1S equivalent, and
masks replication
:rations. The first

3. One method for supporting the primary site approach is to have only the
primary site perform the operations, but periodically checkpoint information
on stable storage, which is accessible to backups. Suppose the primary site
uses two-phase locking for concurrency control. What information should be
checkpointed on the stable storage and when?

