
Copyrighted Page 38

Table 1: Comparison of Parity Codes

In high-speed memories, single-bit error correcting and double-bit error detecting (SEC-

DED) codes are most commonly used. The data before writing to the memory are passed

to a parity generator. The generated parity bit (or bits) is (are) then stored in the memory

together with the data. On read operation the data bits are passed into the parity checker

that regenerates the parity bit (or bits) and compares it with the parity bit(s) stored in the

memory when the original data were written to the memory. The following description

brings more details on Hamming codes.

Copyrighted Page 39

In Hamming single-error correction code, c parity bits are added to a k-bit data word,

forming a codeword of k+c bits. The following expression can be used to determine

number of necessary check (parity) bits to protect k bits of information: 12  kcc .

Consider a data word of four information bits (d3, d2, d1, d0). According to the above

expression, three parity bits (p3, p2, p1) are needed to protect the four bits of data. To

illustrate how the parity (check) bits are generated and checked, assume that the bits in

the codeword are numbered from 1 to k+c. Positions numbered as a power of two are

reserved for the parity bits. The grouping of bits for parity generation and checking is

determined based on a list of the binary numbers from 0 to (2
k
–1), as illustrated in Figure

8.

Figure 8: Determining Parity/Check Bits for Hamming Code

The first group is formed by the data bits in the positions corresponding to the 1-bits in

the least significant bit of the binary count sequence (i.e., bits 1, 3, 5, 7). The second

Determining the bit groups

(three parity bits)

0 0 0

0 0 1 1

0 1 0 2

0 1 1 3 3

1 0 0 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7 7

Parity bits calculation

p1 = XOR of bits (3, 5, 7)
p2 = XOR of bits (3, 6, 7)

p3 = XOR of bits (5, 6, 7)

Parity checking

c1 = XOR of bits (1, 3, 5, 7)

c2 = XOR of bits (2, 3, 6, 7)
c3 = XOR of bits (4, 5, 6, 7)

7 6 5 4 3 2 1

d3 d2 d1 p3 d0 p2 p1

Code Word

Copyrighted Page 40

group is formed by the data bits in the positions corresponding to the 1-bits in second

significant bit of the binary count sequence (i.e., bits 2, 3, 6, 7), and so on. Note that each

group of bits starts with the number that is a power of two. These numbers are also the

position number (in a codeword) for the parity bits. The individual parity bits are

calculated by performing an XOR operation on the data bits specified by a given group.

For parity checking, the XOR operations also include the parity bit itself. As a result, the

original data is encoded by generating a set of parity bits (p3p2p1). To check correctness,

the encoding process is repeated and a set of check bits (c3c2c1) is generated. The binary

word represented by the check bits c3c2c1 forms a syndrome, which points directly to the

position of the erroneous bit.

The Hamming code discussed above can only detect and correct single bit errors. By

adding an extra parity bit, the Hamming code can be used to correct single bit errors and

to detect double errors. In the example of a data word consisting of four information bits,

the additional parity bit, p0, can be calculated as parity (XOR) over the first seven bits of

the codeword. For parity checking, the additional check bit c0, is calculated over all eight

bits of the codeword. Figure 9 illustrates the four cases distinguishable by single-error

correction (SEC) and double-error detection (DED) Hamming code. In general, any code

with an odd Hamming distance can be extended by adding a parity bit to form a code

with a Hamming distance greater by one (and thus even).

Copyrighted Page 41

Figure 9: Error Detection and Correction Using SEC-DED Code

4.5 Cyclic Redundancy Checks

Cyclic redundancy checks (CRCs) are used to detect errors in communication channels,

tapes, and disks. Cyclic codes are parity check codes with the additional property that the

cyclic shift of a codeword is also a codeword. The wide use of CRCs is due mainly to the

following factors: (1) CRC calculators are simple to implement (the needed hardware

includes linear feedback shift registers and XOR gates); in particular, CRC’s have the

advantage that the data can be streamed through the CRC calculator in both directions

(send and receive) and when all the data have passed, depending on the direction, the

CRC check bits or error detection syndromes are generated, (2) CRC has the ability to

detect single-bit errors, multiple adjacent bit errors affecting fewer than n-k (for an (n, k)

code) bits, all odd-bit errors (with proper choice of the generator polynomial), and burst

transient errors (typical of communication applications) and (3) CRC codes and

implementations are independent or message length, with the caveat that if we place a

limit on the message length CRC can detect any two-bit error.

c3 c2 c1 c0

0 0 00

1

y3 y2 0y1

0 0 10

No errors

Single error (in a position x3x2x1)
is detected and can be corrected

Double error is detected but
cannot be corrected

Error in parity bit p0

x3 x2 x1

