
Chapter 4 

Reliable, Atomic, 
and Causal Broadcast 

In the previous chapter, we discussed reliable point-to-point communication as one 
of the basic building blocks. Though point-to-point communication is sufficient 
for many applications, there are many other applications where a node needs to 
send a message to many other nodes. In such applications, a one-to-many form of 
communication is more useful. There are two forms of one-to-many communication: 
broadcast and multicast. Broadcast is the communication paradigm where the sender 
sends a message to all the nodes in the system. In multicast, the sender sends the 
message to only a subset of the nodes in the system. In this chapter, for ease of 
exposition, we will focus on broadcasting. 

Since the basic communication primitive supported by a network is a one-to­
one communication (except in the case of broadcast networks), this communication 
primitive has to be used to support broadcast and multicast primitives. This makes the 
implementation of broadcasting protocols susceptible to node and communication 
failures. It is possible that a sender may fail while broadcasting a mes~age leading 
to the possibility of only some of the nodes receiving the message. Though this may 
be acceptable in some applications, this clearly cannot be accepted when building 
fault tolerant systems. Just like a reliable one-to-one communication primitive is a 
basic building block,· a reliable broadcast primitive is a building block for those fault 
tolerant systems that employ broadcasting. In this sense, reliable broadcasting is 
also an abstraction that is not an end in itself but is needed for building fault tolerant 
applications. 

When messages are being broadcast by different nodes in the system, there 
are three properties of interest: reliability, consistent ordering, and causality 

141 



142 CHAPTER 4 RELIABLE, ATOMIC, AND CAUSAL BROADCAST 

preservation. The reliability property requires that a broadcast message be received 
by all the operational nodes. The consistent ordering property requires that different 
messages sent by different nodes be delivered to all the nodes in the same order. 
Causality preservation requires that the order in which messages are delivered at the 
nodes is consistent with the causality between the send events of these messages. 

These three properties bring in three different types of broadcast primitives: 
reliable broadcast, atomic broadcast, and causal broadcast. Reliable broadcast 
supports reliability only, that is, a message that is broadcast is delivered to all alive 
nodes, even if failures occur in the system. Atomic broadcast, in addition to the 
reliability property, also supports the ordering property. Causal broadcast ensures 
that the order in which messages are delivered. is consistent with the causal ordering 
of these messages. 

Each of these broadcast primitives has its own applications. If an application 
sends isolated messages (e.g., an e-mail message, or a news item), reliable broadcast 
may be enough. However, in database-type applications, it is generally necessary to 
perform operations in the same order at all the nodes to preserve consistency. Hence, 
in this case, atomic broadcast would be needed. If the nodes sending the messages 
also communicate with each other and the contents of the message being broadcast 
depend on the contents of received messages, then causality must be preserved at the 
receiving end and so causal broadcast is required. In this chapter, we will discuss all 
three broadcast paradigms. For each of these we will specify the requirements, and 
then the methods, for implementing them. We will assume throughout the chapter 
that failures do not partition the network. 

4.1 Reliable Broadcast 

In broadcasting, a sender node tries to send a message to all the nodes in the system. 
Reliable broadcast has one basic property: that a message to be broadcast should 
be received by all the nodes that are operational. This property should be preserved 
despite failures. Even if the sender node fails after sending the message to some 
nodes, this property should be preserved. In this section, we will discuss two 
protocols that support reliable broadcast. 

4.1.1 Using Message Forwarding 

We first describe a protocol for reliably broadcasting a message that considers a 
network as a tree [SGS84]. This tree is used as the basis of disseminating the 
message to all the nodes. The root of the tree is the original sender (or the initiator) 
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of the broadcast message. If there is an edge from a node P in the tree to another 
node Q, it implies that during broadcasting the node P will forward the message to 
node Q. This rooted tree represents a broadcast strategy and could be "flat," or a 
linear chain, or something else. 

This tree is a logical structure used to organize the nodes in the network and has 
no direct relationship with the physical structure of the network. How the structure 
of the tree is decided is not an issue for this protocol, though it is clear that it will be 
more efficient if the neighbor of a node in the tree is a neighbor of the node in the -
underlying physical network also. The tree is statically defined and is known to all 
the nodes in the system. 

A relation SUCC is defined on the given tree (V, E). This relation captures the 
hierarchy of the tree. For a node P, SU CC( P) represents the set of successor nodes of 
P in_the tree. For a set of nodes X, SUCC(X) is 'the set of successors of the nodes in 
X. Let the root of the tree (the broadcast initiator) be node S (source). The protocol 
has to ensure that if a message m is broadcast by S, then all nodes that have not failed 
will receive m. 

The set of all failed nodes is represented by FAILED. If a node fails, we assume 
that all other nodes find out about the failure in a finite time. We assume that each 
node has a copy of the set FAILED. In the previous chapter, we discussed how this 
can be achieved by fault diagnosis. 

The basic strategy for broadcasting is as follows [SGS84]. Starting from the root 
of the tree, the message is forwarded along the edges of the tree. A node i, on receiving 
a message, forwards it to all its successor nodes, which send an acknowledgment 
back to i. If the node i does not get an acknowledgment from a node j (in SUCC(i)), 
and finds that j has failed, it assumes that j failed before completing its task and that 
the successors of j may not have received the message. Hence, i takes over the role 
of j and forwards the message to nodes in SUCC(j). This may result in duplicates, 
but duplicates can easily be detected by using sequence numbers. 

This strategy works well for handling the failures of all nodes other than the root, 
since the failure of a node is detected by its parent node which completes the task 
that had to be performed by the failed node. However, the root node has no parent. 
Hence, a special situation arises if it fails before forwarding the message to all its 
successors. 

If the root node S does not forward the message to any of its successors, then it is 
all right, since no alive node has received the message. However, if S had failed after 
sending the messages to some, but not all, of its successor nodes, then something 
has to be done. Essentially, some other node that has received the message has 
to complete the task of S to ensure that the reliable broadcast property is satisfied. 
Multiple nodes performing this does not cause any problem, since duplicate messages 
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can be detected. 
For this, a node i, on receiving a message m from S, monitors S until it recognizes 

that S has failed or that its broadcast has been successful. If i detects the failure of 
S, it takes over the job of S if the broadcast of S was not successful. To help 
other nodes detect whether S has completed its broadcast successfully, S informs its 
successors when its broadcast is successful (i.e., it has received acknowledgments 
from all its successors). If we assume that a node does not initiate any new broadcast 
until its previous broadcast is successfully completed, a node i can infer successful 
completion of a broadcast when it receives a new broadcast message from S, that is, 
it receives a broadcast message which has a larger sequence number. 

Each node i executes the same protocol, exc~pt for the root node, whose protocol 
is slightly different (since it initiates the broadcast). Each node i maintains three sets 
of nodes: sendto, ackfrom, and ackto. These represent the nodes to which a message 
must be sent, the nodes from which acknowledgments are expected, and the set of 
nodes to which acknowledgment has to be sent, respectively. For clarity, we use the 
operation send(k, ack(m)) to signify th<:it a message carrying the acknowledgment 
for the message mis being sent to node k. Similarly, a primitive receive(a9k(a)) is 
used to signify the receipt of a message a that is an acknowledgment. The protocol 
for a node i is shown in Fig. 4.1. 

In this protocol, in the first guard, the protocol sends a message to one of the nodes 
to which it needs to send a message and updates sendto and ackfrom appropriately. 
In the second guard, if it finds that some of the nodes from which it is expecting an 
acknowledgment has failed, it adds the successors of the failed nodes to its sendto 
and appropriately modifies ackfrom. The third guard is straightforward: if an 
acknowledgment is received, then ackfrom is updated. In the fourth guard, if the node 
finds that it has completed its own broadcast (signified by ackfrom =send to = ¢ ), 
and that the root S has faih~d, then it takes over the role of S. The vaiiable r represents · ·· 
the node whose successors the protocol is trying to cover by broadcasting; usually 
it is i, but if S fails, it is set to S. The actions the protocol performs upon receiving 
a new message are shown in the next guard. The actions depend on the sequence 
number. If the sequence number is the same as the sequence number of the current 
message, then it is recorded that an acknowledgment also has to be sent to the sender 
of the message. If the sequence number of the new message is smaller, this means 
that it is an old message, and an acknowledgment is sent to the sender. If the sequence 
number of the new message is larger, this means it is a new message, and ackto is 
set to the sender of the message and sendto is set to the successors. Finally, in the 
last guard, if a node i has no !llessage to send and is not expecting any acks, but has 
some acks to send, it sends those acks. 

The protocol given in Fig. 4.1 is for a node i that is not the root of the tree. For 
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m.sender := S 

r := i 
sendto, ackf rom, ackto := <P 

*[ 
sendto =I- <P -+ 

from send to chose a node i 
sendto := sendto - {i} 
send(i, m) 

ackfrom := ackfrom U {i} 
Dackf romn FAILED =f. <P -+ 

t := ackfromn FAILED 
sendto := sendtoU SUCC(t) 
ackfrom := ackfrom - t 

Dreceive(ack(a))-+ 

145 

if a.seqno = m.seqno then ackfrom := ackfrom - {a.sender} 
OS E FAILED /\r =/:- S /\ ackfrom = <P /\ sendto = <P -+ 

] 

r :=S 
sendto := SUCC(S) 

Dreceive(new) -+ 

if new.seqno = m.seqno then ackto := ackto U {new.sender} 
if new.seqno < m.seqno then s~nd(new.sender, ack(new)) 
if new.seqno > m.seqno then 

forall p E ackto do send(p, ack(m)) 
m :=new 
r := i 
ackto := {m.sender} 
sendto := SUCC(i) 
ackf ram := <P 

Dackto =I- <P /\ (r = b v (sendto = <P /\ ackfrom = </>)) -+ 

for all p E ackto do send(p, ack(m)) 

ackto := </> 

Figure 4.1: The broadcast protocol for a node i [SGS84] 
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the root node S, the guard beginning with S E FAILED is replaced by another where 
it accepts a message if its ackf rom and send to are empty, prepares the message m, 

and sets sendto = SUCC(S). 

This protocol ensures that if a message sent by the root node S has reached even 
one node that has not failed, then the message reaches all the nodes that have not 
failed. Formal proofs of many properties are given in [SGS84]. For messages to be 
sent by different nodes, copies of the protocols, but with different root nodes, will 
have to be executed. That is, for each node, a rooted tree is defined, and a protocol 
for that rooted tree operates at different nodes. However, the different protocols for 
different trees can be easily combined into a single process that will perform all the 
tasks. 

4.1.2 An Approach by Piggybacking Acknowledgments 

Now we describe the Trans protocol for reliable broadcasting [MMA90, MSM94]. 
The Trans protocol uses a combination of positive and negative acknowledgments to 
achieve the reliable broadcast property. By piggybacking acknowledgments (acks) 
and negative acknowledgements (nacks) on messages that are being broadcast by 
nodes, it simplifies the detection of missed messages, and minimizes the need for 
explicit acknowledgments. 

The protocol assumes that when a node broadcasts a message, some nodes receive 
it and some nodes miss it. This type of physical communication medium exists, 
for example, in the Ethernet. An underlying unreliable broadcast protocol in a 
point-to-point network will also have the same effect. The Trans protocol builds a 
reliable broadcast primitive from the unreliable broadcast primitive which it assumes 
is available to it. 

The basic idea of the protocol is to piggyback acknowledgments and negative 
acknowledgments on a broadcast message. Each broadcast message carries the 
identity of the sender node, and a unique sequence number for the message. From 
the acknowledgments and negative acknowledgments, a receiving node knows which 
message it does not need to acknowledge, or which messages it has missed and must 
request other processor to retransmit. The idea behind the protocol is illustrated by. 
this sequence of events in a system consisting of three nodes (or processes): P, Q, 
and R [MMA90]: 

1. Node P broadcasts a message m 1. 

2. Node Q receives the message and piggybacks a positive acknowledgment on 
the next message that Q broadcasts, say, mz. 
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3. On receiving m 2: 

111 If R had received m 1, it realizes that it does not need to send an 
acknowledgment for it, as Q had acknowledged it. 

e If R had not received m 1, it knows about this loss by the acknowledgment 
on m2, and requests retransmission by sending a negative acknowledg­
ment in the next message it broadcasts. 

From this it is clear that by the effective use of acknowledgments and negative 
acknowledgments, the Trans protocol can support reliable broadcast efficiently. 
When a retransmission is requested, any node (not just the original sender of the 
message) may retransmit it. A retransmitted message is identical to the original 
message and contains the same contents. 

To support the protocol, each node maintains an ack-list, a nack-list, a received­
list, and a Pending Retransmissions list (PR-list). The ack-list contains the message 
identifiers of messages for which this node has to send an acknowledgment; the nack­
list contains the message identifiers of messages for which this node has to send a 
negative acknowledgment. The received list contains the messages that this node 
has received or has sent recently, which may need to be retransmitted. Messages 
are deleted from this list when no retransmission of the message could be needed bY 
any processor. The PR-list contains the message identifiers of the messages whose 
retransmission has been requested by, some node. 

To support the Trans protocol, special actions have to be performed by a node 
when sending or receiving a broadcast message. Sending a message by a node is 
straightforward. When a node has a new message m to broadcast, it executes the 
following steps: 

1. Append ack-list tom (as m.acks); reset ack-list to empty. 

2. Append nack-list tom (as m.nacks). 

3. Broadcast m. 

In addition to sending its own messages, a node also sends messages in its PR-list. 
Furthermore, if a node does not receive a positive acknowledgment of a message 
within some time interval, it adds the message to the PR-list (and later broadcasts it 
again). On receiving a message m, a node performs the actions shown in Fig. 4.2 
(m.id refers to the message-id of m). 

On receiving a message m, it is saved in the received-list and its id is added to the 
ack-list, representing that m has to be acknowledged. If in.id is in the nack-list, it is 
deleted, as the message has been received and there is no need to send any negative 
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add m.id to ack-list 
add m to received list 
if m.id E nack-list then delete it. 
if m E PR-list then d.elete it. 

for all id, such that id E m.acks do 
if id E ack-list then delete it 
if message corresponding to id fj. received-list then add id to nack-list 

for all id such that id E m.nacks do 
if message corresponding to id E received-list 

then add message corresponding to id to PR-list 
else add id to nack-list 

Figure 4.2: Receiving a message in the Trans protocol 

acknowledgment. Similarly, if m was in the PR-list, it is deleted; since the arrival 
of the message means that some other node has satisfied the retransmission request, 
hence this node need not send the message. 

After this, the acknowledgments and the negative acknowledgments in the 
message m are processed. All the messages for which acknowledgments are in 
m need not be acknowledged by this node now, and hence are deleted from the ack­
list. If a message that is acknowledged in m is in the ack-list, it is deleted, as no 
acknowledgment need be sent by the node. If the message acknowledged in m is not 
in the received-list, then the node has missed the message and its id is added to the 
nack-list. If a message is negatively acknowledged in m, then if that message has 
been received by the node, it is added to the PR-list, as the sender of m has requested 
retransmission. If the negatively acknowledged message has not been received by 
the node, its id is added to nack-list. 

Besides these actions, if the sequence number m.id of m indicates that messages 
from the sender have been missed, then the missing sequence numbers are also added 
to nack-list. Sequence numbers can also be used to detect duplicates, if needed. 

Let us consider a few examples to illustrate the working of the Trans protocol. 
In the examples, we will use A, B, C, D, etc. to represent messages, a, b, c, d, etc .. 
to represent acknowledgments for the messages, and a, b, c, d, etc. to represent 
negative acknowledgments for the messages. In the examples, we do not ·specify 
the source of a message, as it is not particularly significant. Consider the following 
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sequence of messages that is broadcast [MMA90): 

A Ba Cb De Ecd Cb Fee. 

First message A is sent, which is acknowledged by the sender of B by 
piggybacking acknowledgment a with B. On seeing this acknowledgment, no other 
node that receives B will send an acknowledgment for A. The message C carries an 
acknowledgment for B, and the message D carries an acknowledgment for C. The 
sender node for the message E has not received C, but by receiving D and seeing 
the acknowledgment e, it knows it has missed C, and so sends c as well as d along 
with its message E. On receiving this message, some node retransmits C. Note 
that the retransmitted message is the same as the original message and is not used to 
acknowledge recent messages. The sender of F acknowledges both E and C in the 
message. By these acknowledgments it implicitly acknowledges messages D and B 
(whose acknowledgments came with messages E and C) as well. Thus each message 
typically contains a few acknowledgments, but implicitly acknowledges many more 
messages. 

This example illustrates how the acknowledgments work and how a message 
missed by a node is requested and retransmitted. Now let us see what happens 
if a series of messages is missed. Consider the following sequence of messages 
[MMA90]: 

A Ba Cb De Bed Cb Fbee Ba Gfb. 

In this example, we consider a situation in which the sender of E received neither 
C nor B, but received D. From the message for D, it detects that it has missed 
C, but still does not know about missing B. Hence with E, it sends a negative 
acknowledgment for C. When C is retransmitted and received by this node, the 
positive acknowledgment for B in this message will alert the node about missing 
B, a negative acknowledgment which can then be included in the next message 
(Fin this example). Hence, if a sequence of messages is missed, they are not all 
detected together, but in a transitive fashion. Loss of some messages is first detected 
by the receipt of acknowledgments on the message that has been received. These 
messages are then retransmitted. Some other missed messages are detected when 
these retransmitted messages are received. This transitivity ensures that all messages 
that are missed are detected and finally retransmitted. In some cases, more than one 
message may acknowledge a message. But this does not cause any problem in the 
working of the protocol. 

It is clear that for any message, if some working node has received a message and 
it transmits messages in the future, then all the working nodes will ev~ntually receive 
it, assuming that all nodes have messages to send or they send dummy messages 
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to transfer information about their ack-list and nack-list to others. This happens, 
since on the receipt of a message, some missing messages are detected, which causes 
further detection of missing messages, until all such messages are detected (since for 
each missed message there is some node that has received it). It should also be clear 
that the different nodes may receive the messages in a different order (e.g., one node 
may receive the message in the original transmission, while the other may receive it 
in a retransmission after receiving other messages). As we will see later, this protocol 
can be extended to ensure that all operational nodes deliver the messages in the same 
order. 

4.2 Atomic Broadcast 

The atomic broadcast paradigm for one-to-many communication is stricter than the 
reliable broadcast paradigm. Not only does it require that a message sent by a node 
be received by all the operational nodes, but it also requires that if multiple messages 
are broadcast by different nodes, then the different messages must be delivered at 
all th~ nodes in the same order. Hence, in addition to reliability, the same order of 
delivery at all nodes is an additional requirement. And both of these requirements 
should be satisfied even during the occurrence of failures. We have already seen 
how reliability can be satisfied. The focus in atomic broadcast is ensuring the same 
ordering of messages at different nodes. 

With atomic broadcast, we need to distinguish between a node receiving a 
message and a node delivering it. Receiving a message means that the node has 
received the message using its network interface. Typically, a message sent to a node 
is meant for some process (probably a user process) running on the node. Hence, 
after receiving a message, the node (or rather the operating system on the node) 
has to deliver the message to the process. With reliable broadcast, it was implicitly 
assumed that when a node received a message, it delivered it to the higher layers 
for consumption. However, in atomic broadcast, after receiving a message, it is first 
buffered, and is later delivered. An atomic broadcast protocol has to ensure that the 
messages are delivered in a consistent order, which may not be the same as the order 
in which the messages are received. Frequently, a node has no control over the order 
in which messages are received by it, but it can exercise control on the order in which 
they are delivered. Hence, in atomic broadcast, the order in which the messages are 
delivered is significant, and may be different from the order in which messages are 
received. 

Atomic broadcast is frequently needed in managing process groups, replicated 
data, replicated processes, etc. It is a very useful primitive for constructing fault 
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tolerant systems. Consequently, a large number of protocols have been proposed for 
atomically broadcasting a message. In this section, we will discuss a few of these 
protocols. 

4.2.1 Using Piggybacked Acknowledgments 

Earlier, we discussed the Trans protocol for reliable broadcast. The protocol ensures 
that a message is successfully received by all operational nodes, but does not 
guarantee that different messages are received by different nodes in the same order. 
Here we will see how that protocol can be extended to satisfy the ordering property 
as welL 

In the Trans protocol, since acknowledgments and negative acknowledgments are 
appended in the message itself, and the message is broadcast, a node can determine' 
if another node has received a message. We define an Observable Predicate for 
Delivery, denoted by OP D(P, A, C), where Pis anode, and A andC an~messages. 
We denote the sender of a message A by PA. If 0 P D(P, A, C) is true, it states that 
the node P is certain that Pc has received and acknowledged (directly orindirectly) 
the message A at the time of broadcasting C. The node P can evaluate the predicate 
based on the messages it receives. This predicate is true if, and only if, from the 
sequence of all the messages received, by deleting some of the messages, P can form 
a sequence SM of messages such that [MMA90]: 

1. SM commences with message A and ends with message C. 

2. Every message of SM, other than A, positively acknowledges the predecessor 
in SM, or is broadcast by the same node as its predecessor. 

3. No message in SM is negatively acknowledged by C. 

Essentially these properties say that P has received a sequence of messages (not 
necessarily consecutively) in which the acknowledgments, starting from the acks in 
C, transitively acknowledge A. For example, suppose that the sequence of messages 
that are transmitted by four different processors is [MMA90]: 

The acknowledgments and negative acknowledgments of the messages can be 
represented as a graph, where nodes are .the messages and arcs represent the 
acknowledgments of messages. If a message ml acknowledges a message m2, 

then there is an arc in the graph from m1 to m2. Negative acknowledgments are 
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Figure 4.3: Graphical representation of the sequence of messages 

represented as dashed arcs. The graph for the sequence of messages given above is 
shown in Fig. 4.3. 

Note that the message D2 is considered to implicitly acknowledge D1, as it is 
sent by the same node. This graph is for the global sequence of messages that are 
transmitted. At a given time, the graph at a node will depend on the sequence of 
messages received by that node. However, since Trans supports reliable broadcast, 
and since a retransmission is exactly the same as the original message, eventually 
all nodes will have a graph thi;it is the same as the global graph. If a node receives 
a message m 1 before transmitting m2, then there will be a path from m2 tom I· For 
example, in the graph in Fig. 4.3, there is a path from the node B2 to the node C1. 

There is an arc from B2 to C2, implying that B2 has acknowledged C2. But C2 
contains acknowledgments for D2 and D1. Hence, at the time of broadcasting B2, 
the processor Ps must have received these messages, else it would have included a 
negative acknowledgment for them. Again, D2 contains a negative acknowledgment 
for A 1 and a positive acknowledgment for C 1 · Since B2 does not contain any negative 
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acknowledgment for C1, PB must have received it at the time of sending Bz. Since 
it has not received A 1, a negative acknowledgment is attached to Bz. 

0 PD ( P, A, C) represents that thereis a path from C to A iii the graph formed 
by the messages received by P and there is no negative acknowledgment edge from 
C to any node in the path from C to A. That is, C transitively acknowledges A. OPD 
can be used to define a partial order on the sequence of messages, as follows. 

In the partial order constructed by P, a message C follows a message B 
if, and only if, OPD(P, B, C) and for all messages A, OPD(P, A, B) implies 
OPD(P,A,C). 

In the partial order, if C follows A, it implies that C acknowledges (directly or 
indirectly) the message A and also all the messages that A acknowledges. If C is 
included in the partial order, it means that at the time of transmitting C, the processor 
Pc had received and acknowledged, directly or indirectly, all messages that precede 
C in the partial order. For the graph shown in Fig. 4.3, the partial order is shown in 
Fig. 4.4. 

Figure 4.4: Partial order corresponding to the graph 
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Note that in this partial order, message Ci does not follow Ai (even though it 
contains an ack ai) because Ai follows D1, but Ci has a negative acknowledgment 
for Di. Similarly, Bz does not follow C2 because of Ai. However, C2 follows Ai, 
since there is a path from C2 to A 1, and also a path to any node to which there is a 
path from Ai (which is only the node Di). 

Since the Trans protocol ensures that all operational nodes eventually receive each 
broadcast message, all operational nodes will have the same partial order eventually. 
However, at any given time, the partial orders at different nodes may be different, as 
they may have received a different set of messages. Typically, the partial orders of 
nodes will differ only in the recent messages. Node failures can cause further transient 
discrepancies between the partial orders of different nodes at a given time. This partial 
order can be converted into a total order by the Total protocol [MMA90, MMSA93]. 

The Total protocol needs no additional messages beyond those required by the 
Trans protocol. However, a message is not placed in the total order by a node 
immediately after it is received. A node must wait to receive more messages from 
other nodes before it can add a message to the total order. That is, the protocol 
incrementally extends the total order. The Total protocol is also resilient to node 
failures. Though it can handle multiple node failures, in our discussion we will limit 
attention to the single-node failure case only. 

A message that follows in the partial order only those messages that are already 
in the total order (or follows no message) is a candidate message for inclusion in 
the total order. Each set of candidate messages (called a candidate set) is voted by 
the messages that precede the candidates in the partial order. This "voting" is not an 
actual voting involving messages; rather it is an evaluation based on the messages 
received. Hence the decision of a node about including a message in the total order 
is only dependent on the sequence of messages it receives. 

Voting on a candidate set (CS) takes place in stages. The number of voting stages 
depends on the candidate set and the partial order. In stage 0, the vote of a message 
is based on the precedence in the partial order. In stage i (i > 0) it also depends on 
which messages voted in stage i - 1. Stage i voting also requires the parameter Nv, 
which is (n - 1) /2 (for a resiliency of 1). A message m votes for a candidate set CS 
as follows [MMA90]: 

Stage 0: 

• m votes for CS if CS contains only m: 

• m votes for CS, if (i) no message from the sender of m that precedes m has 
voted for CS, (ii) m follows every message in CS, and (iii) m follows no other 
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candidate message. It votes against CS if it follows some other candidate 
message. 

Stage i: 

• m votes for CS if (i) no message from the sender of m that precedes m has 
voted for CS, (ii) the number of messages that had voted for CS in stage i - 1 
that m follows in the partial order is at least Nv, and (iii) it follows fewer 
messages that voted against CS than voted for CS in stage i - 1. 

• m votes against CS if the number of messages that had voted against CS in 
stage i - 1 that m follows in the partial order is at least N v, and it does not 
vote for CS in stage i. 

It is clear from these rules of "voting" that a node can determine its votes from 
the messages it receives. From these votes a node decides how and when to add 

_ messages to the total order. The voting rules and the decision criteria together ensure 
that all nodes form the same total order from the partial order. The decision criteria 
for a node P is given below. The decision criteria requires the parameter Nd which 
is (n + 2)/2 (for a 1-resilient system). 

The Decision Criteria: 

In stage i where i > 0 

• P decides for CS if the number of messages in its partial order that voted for 
CS in stage i is at least Nd, and for each proper subset of CS, P has decided 
against it. 

• P decides against CS if the number of messages in its partial order that voted 
against CS in stage i is at least Nd. 

Once a decision is made in favor of a candidate set, the messages of that set are 
included in the total order in some deterministic order. The whole process is then 
repeated with the new set of candidate messages. Note that by the way the partial 
order is constructed, a node can always determine the vote of a message in its partial 
order, since all messages that precede this message in the partial order must have 
been received by the node. The Total protocol ensures [MMA90] that: (i) If a node 
decides for (against) a candidate set, then all nodes decide for (against) that set. (ii) 
If a node includes a candidate set as its }th extension to its total order, then all nodes 
include that set as their jth extension. Consequently; the total orders of all nodes are 
the same. (iii) The total order is consistent with the partial order. 
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Let us illustrate the Total protocol by use of examples. First, let us consider a 
1-resilient, six node system. In this system, four votes are needed for a decision 
to include a candidate set in the total order. Assume that the transmissions are all 
reliable and all nodes receive all the transmitted messages. The partial order of such 
a system is a linear chain, and is shown for five messages in Fig. 4.5. 

Figure 4.5: A simple partial order that converts easily into a total order 

The graph with acknowledgments will also be the same, as there are no negative 
acknowledgments in the system. At the start, there is only one candidate message, 
A1, and so only one candidate set {AI}. The messages A1, B1, C1, and D1 vote for 
this candidate set (B2 does not, since B1 is voting). Four votes are sufficient for a 
decision. Hence, whenever a node receives the message D 1, it can decide to include 
A1 in the total order. Note that until D1 is received, a node cannot decide on A1. 

Let us now consider the partial order shown earlier in Fig. 4.4. Assume that 
there are four nodes in the system. Hence, three votes are needed for a decision. 
The candidate messages are Br and Dr and the candidate sets are {Br}, {Dr}, and 
{B1, Di}. Only messages C1 and B1 vote for {BJ}, which is not sufficient for a 
decision. Similarly, A1 and D1 vote for {Di}, which is not sufficient for a decision. 
Hence, both these candidate sets are rejected. For the candidate set {B1, Di}, the 
messages C 1 , A 1 , Dz and Bz vote, which is sufficient to decide. Hence, this candidate 
set is chosen for inclusion in the total order. After these messages have been added, 
thegcandidate messages are Ai, Ci, and Dz. It can be seen that no candidate ·set of 
these messages will get the required three votes. Hence, no further addition to the 
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total order will be made till enough new messages are received to obtain the required 
number of votes. 

4.2.2 A Centralized Method 

Now we discuss an approach in which consistent ordering of messages is guaranteed 
by conceptually funneling each message through a centralized message exchange 
[CM84]. Like the Total protocol, this protocol also assumes that the underlying 
communication is broadcast. The protocol converts the unreliable broadcast 
communication available to it into an atomic broadcast primitive. 

The basic idea behind the protocol is simple. If multiple nodes broadcast 
messages, there is no guarantee of the order in which the messages will reach the 
different destinations. However; if all messages are broadcast through a centralized 
message exchange, then the order in which the messages will be received at different 
nodes will be the same as the order in which the centralized message exchange sends 
them. This order may be the same as the order in which the message exchange 
receives the messages from the different original senders of the broadcast messages. 
This centralized approach can guarantee consistent ordering at all nodes, but it is not 
resilient; the failure of the message exchange can disrupt the process. Hence, in this 
protocol, the centralized message exchange is rotated between different nodes. 

In the protocol, the senders do not actually send the message through the message 
exchange (called the token site in the protocol). Instead, a sender node directly trans­
mits the message using the (unreliable) broadcast primitive available. On receiving 
these messages, nodes save them in a buff er queue QB. The token site, which is 
one of the receiver nodes, assigns the message a unique global sequence number, 
gs eq, and transmits it to all nodes through an acknow iedgment message. This global 
sequence number is used to cl,etermine the order in which the messages in Qs are 
delivered by nodes, and also to detect missing messages. The token site is rotated 
among a set of nodes called the token list. 

Normal Phase 
The protocol has two phases: a normal phase and a reformation phase [CM84]. 

The normal phase consists of activities performed if no failure occurs, while the 
protocol gets into the reformation phase when some nodes fail. For the nomial 
phase, each node i maintains the following information: 

• Mi [j]: The sequence number of the next broadcast message it expects from 
a node j. A node assigns sequence numbers consecutively, and hence receipt 
of a message from j with a higher sequence number than expected tells the 
receiver that it has missed some messages that were earlier sent by j. 
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• gseqi: The next global sequencenumberitexpects. Again, if a node receives a 
global sequence number from the token site that is higher than what it expects, 
it knows that it has missed some global sequence numbers sent earlier. 

Initially, all nodes have the same gseq (say 0), and the same sequence number 
it expects from other nodes (say 0). During the normal phase, there are three major 
activities that are performed for atomically broadcasting the messages: transmitting, 
assigning global sequence numbers, and committing [CM84]. 

Transmitting. A node transmits (i.e., broadcasts) a message. The current token 
site, if it receives the message, sends an acknowledgment to the sender node. The 
sender node repeatedly transmits the message until it receives an acknowledgment 
from the token site. Each broadcast message contains < j, n >, where j is the 
node identifier and n is the sequence number j has assigned to the message. This 
sequence number represents the number of messages that have been broadcast by 
node j, hence successive messages from j have sequential numbers. 

Assigning global sequence number. The token site acknowledges messages 
broadcast by nodes. If the token site i receives a message with < j, n > such 
that Mi [j] = n, it assumes that this message has not been acknowledged, and 
transmits an acknowledgment ACK(gseqi, < j, n >).Each ACK message, besides 
acknowledging the sender, also signifies the transfer of the token site to the next node 
in the token list. After transmitting an acknowledgment, it increments its gseqi and 
Mi[j]. 

The nodes save the messages they receive in QB. A node processes the ACK 
messages ACK (seq, < j, n >) in the order they arrive. An ACK message is 
processed by a node k only if seq = gseqk and the message corresponding to 
< j, n >is in Qs. When an acknowledgment is processed, gseqk is incremented, 
and Mk[j] is set ton+ 1. If for an ACK message, the node k does not have the 
message corresponding to < j, n > in its Qs, it implies that it has missed this 
message earlier, and it transmits a request for its retransmission. If seq < gseqk, 
this acknowledgment is a duplicate and is not processed. If seq > gseqk, it 
means that the node k has missed some previous ACK messages, and it transmits a 
request for retransmission of messages between gseqk and seq. All retransmission 
requests are satisfied by the token site, and a node repeatedly transmits its request 
for retransmission until it gets the requested message or ACK. 

Committing. After the message has been assigned a global sequence number 
and the token has been successfully transferred L times, it is certain that at least the 
L +. 1 token sites have successfully received the broadcast message. At this time, 
the message is "committed." As long as L ,Gffewer nodes in the token list fail, all 

6-(' 



4.2 ATOMIC BROADCAST 159 

committed messages can be recovered. As the token is transferred with an ACK 
message, a null ACK is sent to transfer the token site in case there are no broadcast 
messages. The committed messages are delivered by nodes in the order of their 
global sequence numbers. This ensures that all nodes will deliver the messages in 
the same order. 

In this method, the token site is responsible for acknowledging a message and 
thereby assigning a global sequence number to it, and also for transferring the token 
site. Since the token is also transferred as a part of the ACK message, token transfer 
does not require any additional messages. A token site accepts the transfer from the 
previous token site, if the global sequence number in the ACK message is the same 
as the node expects, and the corresponding message is in the queue. Otherwise, it 
waits till it receives all the required messages. Therefore, when a token site accepts 
a transfer of token, it has received all the messages and acknowledgments that may 
be requested for retransmission later. This property makes the token site capable of 
satisfying a retransmission request. 

Reformation Phase 
The protocol enters the reformation phase when a failure or recovery is detected 

[CM84]. The token list initially consists of all the nodes. Failure of some of these 
nodes can disrupt the token-passing mechanism. Hence, the reformation process 
redefines the token list. The new list will consist of only operational nodes. When a 
new list is formed, the protocol resumes normal operation. 

Any site that detects a failure initiates a reformation, and is called the originator. 
Since there could be different token lists at different times, a version number is 
associated with a token list. A new token list will always have a higher version 
number than the old token list. Since multiple sites may initiate reformation, the . 
reformation protocol has to ensure that after the reformation there is exactly one 
valid token list. The process also has to make sure that none of the messages that 
was committed from the old token list are lost. 

An originator first asks the other nodes to join in forming a list. The originator 
also chooses the version number of the new list to be one more than the version 
number of the previous list. During the reformation, a node can join only one list. 
The lists formed during the reformation started by a node become the new token list 
only if they satisfy the majority test and the sequence test. 

The majority test requires that a valid list has a majority of the nodes. This test 
ensures that there is only one valid list at a given time. The sequence test requires that 
a site only joins a list with a higher version number than the list it previously belonged 
to. The originator always passes this test, since it chooses the version number to be 
one more than its previous version number. If any of the nodes fail this test, it tells 
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the originator its version number. The originator adopts the higher version number, 
and uses one more than this version number the next time that it tries to form a list. 
The combination of the majority test and the sequence test ensures that all valid lists 
have increasing version numbers. This happens because any two valid lists must 
have some nodes in common, which ensures that a new valid list always has a higher 
version number than the previous valid list. 

In addition to these, the protocol has to ensure that none of the messages that was 
committed with the old list are lost. It should also make sure that the old list cannot 
be used by nodes that are unaware of the new list. This is done by the resiliency test. 
In the normal phase, for L resiliency, a message is committed only after the token 
has been passed L times after the message is acknowledged by the current token site. 
That is, L + 1 sites have the message before it is committed. If the new list consists of 
any one of these sites for the message that was assigned the highest global sequence 
number in the old list, then the committed messages cannot be lost. 

To ensure this, when a site i agrees to join a list, it tells the originator the next 
global sequence number that would have been assigned to a message w~th the old 
list, and the old list version number. The list with the largest known version number 
is considered to be the old list. 

The reformation protocol of (CM84] is a three-phase protocol. In Phase I, the 
originator forms a new list. The procedure for forming a list is described above. 
The originator enters Phase II when all nodes have either responded or have been 
detected to have failed. To prevent the reformation process from being blocked due 
to the failure of the originator, a site leaves a list if no messages are received from 
the originator during some specified timeout period. A node can respond only if it 
belongs to the list (i.e., has not left it) and has recovered all the missing messages. A 
site that has missed some messages first requests the missed messages from the new 
token site. 

In Phase II, the new list is formed. The new list consists of all the nodes that 
have responded. The majority and resiliency tests are applied to the new list. If the 
list is not valid, the originator aborts the reformation process. If the list is found to 
be valid, it is announced to all the nodes in the new list. A new token site is elected 
and the starting global sequence number determined. The new token site has all the 
messages up to the starting global sequence number of the new list. 

In Phase III, the originator generates a new token and passes it to the new token 
site. The new token site accepts the token and starts acknowledging the message, 
and the reformation process is complete. 



4.2 ATOMIC BROADCAST 161 

4.2.3 The Three-Phase Protocol 

A straightforward way to achieve consistent ordering of messages at different nodes 
is to assign priorities to messages, and then deliver the messages in the order of · 
priority, say the lowest priority message is delivered first. With different nodes 
assigning priorities, the problem in this approach is how a node should ascertain that 
no other message with lower priority will arrive later. This is particularly harder if 
the communication delays can vary. 

J The three-phase protocol solves this problem by all the nodes explicitly agreeing 
to a priority of a message and then only assigning higher priorities to later messages 
[BJ87]. This agreement protocol for assigning priorities works in three rounds of 
message exchange. That is why this protocol is called the three-phase protocol. The 
protocol presented here can work for both multi casting and broadcasting, though we 
will discuss only the broadcasting case. 

Assume that a message is atomically broadcast by a node by using the 
abcast(m, p) primitive, where m is the message and pis the priority (an integer) 
assigned to the message locally by the node broadcasting m. Each node maintains 
a queue, in which it keeps the messages it has received, till it delivers them. Each 
message is tagged deliverable or undeliverable. The protocol works as follows 
[BJ87]: 

1. (Phase I.) The sender transmits the message (m, p) to all the nodes. 

2. (Phase 11.)Each receiver adds the message to its queue, and tags it as 
undeliverable. It then assigns this message a priority higher than the priority 
of any message that was placed in the buffer. It then informs the sender of the 
priority that has been assigned to the message. 

3. (Phase ID.) The sender collects the responses from all the nodes that have not 
failed. It then computes the maximum value of all the priorities it has received, 
and sends this value back to the receivers. 

4. Each receiver changes the priority of the message to the priority received from 
the sender, and tags the message as deliverable. It sorts the queue in the order 
of the priority of the messages. Starting from the lowest priority message, it 
delivers all the messages which have been marked as deliverable, in order of 
priority. The delivery of messages stops at the first encounter of a message 
that is still not marked deliverable. 

It is clear how the unique priority is being assigned and how a node determines 
that it will not receive a message with a lower priority. Consider a message m which 
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a node S wants to atomically broadcast. The final unique priority to m is assigned by 
S itself in Phase III. Since the initial priority to m was assigned by each receiver and 
it was higher than any priority the receiver was aware of, in Phase III, the priority 
that the S assigns to m will be the highest global priority in the system. Since these 
messages are sent to all the nodes, all nodes will later assign priorities that are higher 
than the final priority assigned tom. So, if the message mis marked as deliverable, 

any later message will have a higher priority and hence will be delivered after m. 
However, an older message with a lower priority may be in the queue, whose final 

priority has not yet been determined, and whose final priority may finally tum out to 
be lower than the final priority of m. Since message delays are arbitrary, we cannot 
make any assumptions about the order in which different messages from different 
nodes arrive at a node, and this scenario is possible. To avoid this, a message is not 
delivered if there is any message oflower priority that has not yet been delivered. That 
is, in the last step of the protocol, the message that is first delivered is the one that has 
the lowest priority and is marked deliverable. When one such message is delivered 
and is removed from the queue, this process repeats itseif till either all the messages 
have been delivered, or till we encounter a message which has the lowest priority 
but is not marked deliverable. Since only the messages that are marked deliverable 

are actually delivered, and the messages are marked deliverable only after they have 
been assigned their final priority, we can see that all nodes will deliver the messages 
in the same order, which is the order of the final priorities of the messages. This also 
implies that a message is delivered only after the three phases have been executed 
for it. 

Let us consider an example of messages concurrently being broadcast. Suppose 
two messages m 1 and m2 are broadcast by two different nodes. Let us consider two 
nodes 1 and 2. Suppose node 1 gets ml; mz, and sends the initial priorities p and 
p' back to the senders of m1 and m2 respectively (we know that p' > p). Suppose 
node 2 gets mz; m1 and sends q and q' to the senders of m2 and m1 respectively 
(with q' > q). The sender for m1 computes the final priority P1 = max(p, q') and 
the sender for m2 computes the final priority Pz = max(p', q ). These priorities are 
communicated to nodes 1and2. Let P1 < I?z. We then want both nodes 1and2 to 
deliver the messages in the order ml; m2. If P1 < p', then as soon as P1 is received 
by node 1, its m I will be ready for delivery, since it will have the lowest priority and 
will be marked deliverable. Let us see what happens if node 2 gets P2 before it gets 
P1. When it gets Pz, it will set the priority of m2 to Pz, and mark it deliverable. The 
other message it has is m 1 which is marked undeliverable and still has the priority 
q'. Since P1 > q', P2 > p', and by assumption P1 < p', we have P2 > q'. That 
is, even though m2 has been marked deliverable, it still does not have the lowest 
priority, and hence cannot be delivered. When P1 is received, then both messages 
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can be delivered, but m 1 will be delivered first, as P1 < P2. Hence, the protocol 
ensures that even though the messages may be received in a different order, they are 
actually delivered in the same order at all nodes. 

Let us now consider failures. In this protocol, the failure of a receiver node causes 
no problem. Since the sender only tries to communicate with operational nodes, and 
since a sender also detects the failure of a node, the failed node is simply ignored 
by the sender. However, if a sender node fails during the protocol, it can cause 
problems if at least one of the receivers has its message tagged as undeliverable. The 
presence of an undeliverable message implies that the protocol was not completed 
and some nodes may have the final priority, while others may not. In such a case, 
a node with the undeliverable message takes over the role of the failed sender, on 
detecting its failure, and becomes the coordinator. After becoming the coordinator, 
it first asks all the nodes the status of their messages. If any of the nodes has a 
message tagged deliverable, it sends the message and its priority. The presence of 
a deliverable message implies that the sender had computed the final priority and 
had communicated it to some of the nodes before failing.· The new coordinator then 
uses this as the final priority and distributes it to other nodes. If this is not the case, 
the new coordinator first checks if any node has missed the initial message (sent in 
Phase I). If so, it sends its copy of the message to those nodes. After this, Phase II 
and Phase III are executed, as they would have been executed by the original sender. 
This approach requires that even after a message is delivered by a node, it cannot 
be actually removed until all nodes have received the message. Hence, the "garbage 
collection" of unneeded messages is done separately by a separate process. 

4.2.4 Using Synchronized Clocks 

Now we describe a protocol that employs synchronized clocks to guarantee ordering 
[CAS85]. Many protocols were presented in [CAS85] to satisfy the ordering property 
in the face of different types of faults. We will limit our discussion to fail stop failures 
only. It is assumed that node and link failures do not partition the network. 

The protocol assumes that the network delay is bounded. A message m, sent by 
a node P to another node Q takes, at most, 8 time to arrive at the destination, if both 
P and Q remain operational. For a fixed upper bound on the number of node and 
link failures, the worst-case message delay from one operational node to another can 
easily be determined for a given network topology [CAS85]. Let this worst-case 
message delay be D. That is, even in the presence of a maximum number of nodes 
and link failures, a message sent by a nonfaulty node arrives at another nonfaulty 
node within D time. This worst-case delay D depends on the maximum transmission 
delay 8, and the maximum number of nodes and links that can fail. 
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The clocks of the different nodes are assumed to be synchronized, so that the 
clocks of different nodes are within fJ of each other. With this, we can say that if 
a message is sent by a node P at time t by its clock, the message will arrive at its 
destination by time t + D + fJ, by the clock of the destination node. The termination 
time of the protocol is f... = D + fJ. The goal of the protocol is to ensure (i) every 
message broadcast by a node at time t (by local clock) is delivered to every nonfaulty 
node at time t + f... (by the receiver's clock), and (ii) all delivered messages are 
delivered in the same order to all nonfaulty nodes. 

The protocol uses message diffusion to achieve its goals. When a node initiates 
the broadcast of a message, it timestamps the message with the value of its local 
clock, and also attaches its own unique node-id. A node sends the message along all 
outgoing links. When an intermediate node receives the message, it forwards it on 
all links other than the link on which the message arrived. To satisfy the ordering 
property, the messages are delivered by all nodes in the order of the timestamps of 
the messages. If the timestamps are the same, ties are broken based on node-ids of 
the sending nodes. Bounded message delays and synchronized clocks are used by a 
node to determine how long it should wait before it can be sure that no message with 
a smaller timestamp can arrive. 

The protocol consists of three tasks. The start task initiates the broadcasting by 
sending a message on all of its outgoing links, the relay task forwards the message 
to adjacent nodes, and the end task delivers the message. The start task is given in 
Fig. 4.6. 

obtain message m to be transmitted 
attach local timestamp and node-id to m 
send m to all neighbors 
append m to history H 
schedule(End, t + f..., t) 

Figure 4.6: The start task 

This task is performed by a node whenever it gets a message (from a process) 
to atomically broadcast. The node attaches the local clock and the node-id to the 
message and sends it to all the neighbors. The fact that m has been broadcast is 
recorded in a history variable H. This history H keeps track of ongoing broadcasts. 
In the end, the task schedules the End task to start at time t + f..., by which m will be 
received by all nodes. The current time at which the broadcast is initiated (i.e.; t) is 
passed as a parameter to the End task when it is executed. 
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The relay task is shown in Fig. 4.7. This task is initiated by a node when it 

receive (m) --+ 
r = current time 
if r > m.t + 6. then exit/* late message*/ 
if m E H then exit/* An old message*/ 
send m on all outgoing links except on which m came 
append m to history H 
schedule(End, m.t + ~. m.t) 

Figure 4.7: The relay task 

receives a message. If the current time is more than the time at which the message 
was sent plus ~. the message is late and is discarded. Similarly, if the message is 
already in history H, it is discarded as a duplicate. Otherwise, m is forwarded to 
other neighbors and is appended to H. The End task of this node is scheduled at 
time m.t + ~. It should be noted that the End task is scheduled based on the time 
when the message was originated, not based on the time of arrival at the node. 

Each message that is broadcast by some node at time t (by its local clock), must 
be received by all the nodes in the network by time t +~by their local clocks. As 
messages pass by the nodes, the End task is scheduled to execute at time t + ~. where 
t is the time at which the broadcast of the message was originated (as this time is 
recorded in the message, all nodes know about it). When the End task is executed, it 
delivers all the messages whose broadcast was initiated at time t by the local clock 
of the originator node. If there are multiple such messages, then the messages are 
delivered in the order of the node-ids of the originator nodes (the node-id of the 
originator is also appended in the message). All the messages it delivers are also 
deleted from the local history H. 

It is clear that a message that is broadcast by any source node at time ts is delivered 
by a node when its local clock is ts + ~. It is also clear that all the nodes d~liver the 
messages in the same order. This order is the same as the order of the timestamps 
of the messages, with those messages sent at the same local time by different nodes 
being delivered in the order of their node-ids. 

4.2.5 A Protocol for CSMA/CD Networks 

Now we describe a protocol for atomic broadcast for Carrier Sense Multiple Access 
with Collision Detection (CSMA/CD) networks that exploits the broadcast and 
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collision detection property of such networks [J a192]. Consider a system which uses a 
common, shared medium for communication, and follows the Carrier Sense Multiple 
Access with Collision Detection (CSMA/CD) protocol [Tan88, Sta87]. Ethernet 
[MB76] is a prime example of such a network. In such networks, a node in the 
system usually has the Network Interface (NI) hardware that executes the Medium 
Access Control layer (MAC iayer) protocol for the CSMA/CD network [Tan88]. The 
NI is usually connected to the common medium through a passive device called a 
transceiver, whose job is to pass the bits to the NI as they arrive. It also contains the 
collision detection hardware, and when a transceiver detects a collision, it sends a 
short jamming signal to enhance collision detection at other nodes. 

A packet to be broadcast is given to the NI for transmission. The Nireceives/sends 
a packet bit-by-bit from/to the transceiver and is responsible for all the activities of 
the MAC layer protocol, such as sensing the channel, transmitting the packet if 
the channel is free, aborting the transmission arid later retransmitting a packet if a 
collision occurs, buffering of packets, etc. Above the NI are the communication 
software for higher-level communication protocols and user processes. 

Even though the medium in such networks is inherently a broadcast. medium, it 
does not guarantee that all the nodes will receive a broadcast message. Some of the 
nodes in the network may not receive a broadcast message. This can happen due to 
transient problems of buffer, network connection, etc. resulting in missed messages. 
Even though such networks are very reliable, this rare event where some nodes might 
miss some messages requires a special protocol for supporting reliable broadcasts. 
The protocol makes the following assumptions about the network: 

1. The number of nodes that miss a broadcast message is less than half of the 
total nodes. This assumption is likely to be satisfied for most LANs. 

2. The NI of a node can cause a collision at any time, even while receiving 
a message being transmitted by some other node, by sending a 'jamming 
signal." Current network interfaces of CSMAICD protocols do not provide 
this facility, since it is not needed, and the logic of NI has to be extended to 
support this. However, since the NI receives a packet bit-by-bit as it arrives 
on the cable, it can send a jamming signal, if needed, during the receiving of 
the packet. Further details about how to satisfy this assumption are given' in 
[Jal92]. 

The NI of each node maintains a counter, initialized to 0. The counter at a 
node i, is referred to as Ci. When the NI transmits an atomic broadcast message, it 
attaches the current value of the counter as the sequence number of the message (for 
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a message m, the sequence number is represented by m.seq). If no collision occurs 
(i.e., the broadcast is successful), then the counter is incremented. 

On receiving a message, if the sequence number of the message is greater than 
or equal to the counter value of the node, the counter is set to one more than the 
sequence number of the incoming message. If the sequence number is less than the 
counter value, the counter remains unchanged. Proper use of sequence numbers is 
central to the scheme. Only atomic broadcast messages have sequence numbers and 
affect the counters. Other messages, such as messages to particular destinations, or 
control messages, have no effect on the counters. 

If there are no missed messages, all the counters will have the same value, and 
the messages will be sequentially numbered in the order in which they are actually 
transmitted. A global sequence number is defined as the number of broadcast 
ipessages that have been successfully transmitted. The counter of a node is said 
to be correct if its value is the same as the global sequence number. Due to missed 
messages, the counter value of some nodes may be less than the global sequence 
number. This property is used for detecting missed messages. At any given time, the 
set of alive nodes can be partitioned into two sets: a set of nodes whose counter value 
is the same as the global sequence number, and a set of nodes whose counter value is 
less than the global sequence number. No node can have a counter value greater than 
the global sequence number. Note that a node does not know by itself which set it 
belongs to. A node knows that it has missed some messages if it receives a message 
with a sequence number greater than its counter value. However, if a node receives 
a message whose sequence number is the same as its counter, it does not imply that 
the node has not missed any messages. If a node that has missed some messages 
transmits a message to others, other nodes which have also missed the same number 
of messages will have a counter value that is the same as the sequence number. 

This creates the possibility that a node that has missed some messages may 
broadcast a message which can be received and delivered by another node. This 
will make the order of delivering the tnessages by this receiving node different from, 
say, a node that has not missed any messages. If we can ensure that a node with 
an incorrect counter is not allowed to successfully broadcast a message, tl~en if the 
counter value at a node is the same as the sequence number at a node, it implies that 
the node has the correct counter value. 

The problem is to stop a node with an incorrect counter from broadcasting. In 
the protocol, a simple approach is used. If, while_ receiving a message, the NI of 
a node discovers that the incoming message has a sequence number less than its 
counter value, it immediately sends a jamming signal, thereby causing a collision. 
This collision has the same effect as it does in a regular CSMA/CD protocol; the 
message is not successfully received by any node. This chei;::king of the sequence 



168 CHAPTER 4 RELIABLE, ATOMIC, AND CAUSAL BROADCAST 

number and jamming has to occur while the message is being received and before the 
transmission ends. For this reason, it has to be done in the NI. The communication 
software above the NI will not be able to do this, as the NI passes the packet only after 
it has successfully received the entire packet. The effect of this feature on timing 
and minimum packet size is discussed in [Jal92]. 

The sending and receiving procedures at a node have to be modified to accomplish 
all this. The modified procedures for a node i are given in Fig. 4.8 [Jal92]. 

The sending procedure (lines 1-7) is similar to a regular procedure for sending a 
message in a CS MN CD network. The only difference is the addition of the sequence 
number, and the management of the counter. 

In the receiving procedure, different actions are taken depending on the relation 
of the sequence number of the incoming message to the counter value. If m .seq = Ci 
and the previous message in the buffer is marked (i.e., has been delivered), then the 
message is immediately delivered and marked, the counter is incremented, and the 
messages are buffered (lines 12-18). If the previous message is not marked (i.e., 
has not yet been delivered), the message is simply buffered and is not delivered 
(lines 17-18). The jamming by a node of any incoming message m for which 
m.seq < Ci (lines 10-11) ensures that when m.seq = Ci, then all the messages 
with a sequence number less than m.seq have either been received or have been 
requested. If m.seq > Ci, a retransmiLrequest for the messages with the sequence 
number Ci + 1 through m.seq - 1 is broadcast, and the counter is set from the 
sequence number of the message (lines 19-23). Note that retransmiLrequest is not 
an atomic broadcast message, and may not be received by all the nodes. Also, it has 
no effect on counters. 

If a retransmiLrequest is received by a node, it transmits any message in the 
requested sequence that it has in its buffer (lines 24-25). Sending of messages in 
response to a retransmiLrequest is considered as a reliable point-to-point, positive­
acknowledgment-based scheme. Counters are not modified for these messages. 
Many nodes may respond to a retransmiLrequest, and the requesting node may 
receive many copies of the message from many different nodes. However, all these 
will have the same sequence number and the duplicates can easily be discarded. Once 
all the messages have been received, the node marks and delivers all the unmarked 
messages (lines 26-30). · 

The protocol uses the fact that a message is received by more than half of the 
nodes (the set of nodes that receive a message is callt?d the receiving set of that 
message). Consequently, the intersection of the receiving sets of any two messages 
is non-empty. The protocol ensures that after any successful broadcast, more than 
half the alive nodes have counter values which are the same as the global sequence 
number, and any node with a counter value less than the global sequence number is 
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1. send(m) -+ 
2. m.seq =Ci 
3. Attempt broadcast 
4. if successful 
5. Increment Ci 
6. Buffer m 
7. else wait for random time and try again 

8. receiving(m)-+ 
9. if mis a ordered broadcast message 
10. if m.seq < Ci 
11. J arn the transmission 
12. if m.seq =Ci 
13. Receive the entire message 
14. if msg with seq C - 1 is marked 
15. Markm 
16. Deliver m 

17. Increment Ci 
18, Buffer m 
19. if m.seq > Ci 
20. Receive the entire message 
21. Buffer m 

22. Send retransmiLrequest [Ci + 1..m.seq - 1] 
23. Ci = m.seq + 1 

. 24. if m is a retransmiLrequest 
25. Send requested messages from buffer to sender 
26. if m is a retransmitted_message 
27. Buffer m 
28. if all requested messages received 
29. Deliver all unmarked messages in order 
30. Mark all these messages 

Figure 4.8: Modified send and receive procedures 
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prevented from successfully transmitting any message. This leads to the property 
that if a node receives two messages numbered s and s+ 1, then it has not missed any 
message between these two messages. 

Due to the non-null intersection of the receiving sets of different messages, all 
the nodes that receive the retransmiLrequest together have all the messages a node 
has missed. Hence, every retransmit request is satisfied. There are other properties 
of the protocol which can be used to reduce the number of messages that need to 
be stored in the buffer by a node [Jal93]. Further details about implementing this 
protocol are also given in [Jal93]. 

4~3 Causal Broadcast 

In atomic broadcast, the order in which messages are delivered is not important. 
Though this is sufficient in many applications, it is not strong enough in others. In 
some situations there are some restrictions on the order in which different requests 
sent by different nodes should be delivered to the resource. For example, consider 
the situation of a distributed database system in which a node i broadcasts a request, 
and then sends a message to another node j. After receiving this message, node 
j sends its own request for some operation on the database. It is conceivable that 
the request made by j uses the information given to it by i, and may depend on 
the fact that i has already perfonned some operation on the database. In such a 
situation, it is desirable that the request made by j be performed on the copies of 
the database after the request by node i has been performed. With atomic broadcast, 
this restriction cannot be enforced. For this, we require causal broadcast in which 
the causal ordering of messages is preserved. 

As we have seen in Chapter 2, a "happened before" relation (represented by -+) 
can be defined by the events in a distributed system. This relation defines the potential 
causality between events in a distributed system. That is, ei -+ ez means that the 
event ei can causally affect the event ez. This relation specifies a partial ordering 
of the set of events in the system. We will also refer to the ordering defined by -+ 
as causal ordering. Causal broadcast requires that the order in which the messages 
are delivered by a node is consistent with the partial ordering defined by -+ on the 
events corresponding to the sending of the messages. Let the event corresponding to 
the sending of a message m be represented by s (m). · Causal broadcast requires that 
if s(m1)-+ s(m2), then m1 is delivered before m2 by all nodes. In the rest of this 
section, m1-+ m2 means thats(m1)-+ s(mz). 

The causal ordering of messages can be preserved by two different approaches, 
leading to two different sets of requirements for causal broadcast. The weaker 
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requirement only states that the causality should be preserved. The stricter 
requirement states that the consistency with the causal relationship is over and above 
the total ordering requirement. That is, the messages should be delivered in the 
same order at all the sites, but the order should be such that it preserves the causal 
relationship between messages. We will discuss two different protocols for causal 
broadcast, one for the weaker requirement, and one for the stricter requirement. 

As in atomic broadcast, we distinguish between a node receiving a message and 
delivering a message. A message is received by a node when it arrives over the 
network and the node has no control over the order in which messages are received. 
A received message is delivered (to the processes executing on the node) whenever 
the node wishes to do that. Hence, the order of delivery is entirely in the control of a 
node. Causal broadcast protocols have to ensure that the order in which the messages 
are delivered is consistent with the causal ordering. 

4.3.1 Causal Broadcast without Total Ordering 

We first discuss a protocol that delivers messages to nodes in the system in an order 
that preserves the causal ordering. However, it does not guarantee the same total 
ordering of all messages at all nodes. That is, if two messages m and m' are such 
that m -+ m', then m is delivered before m' at all nodes. However, if there is no 
causal relation between m and m', that is, m fr m' and m' fr m, then m and m' 
can be delivered in any order, and that order may not be the same at different nodes. 

The protocol described here is distributed, and can support causal multicasting 
also [BJ87]. For causally broadcasting a message, a process executes the broadcast 
primitive C BCAST(m, l, dests), where mis the message, l is a label, and dests is 
the set of destination nodes to which the message is to be sent (where not needed, we 
will ignore the last two parameters). The label is a timestamp based on logical clocks 
(discussed earlier in Chapter 2) which preserve causal ordering. Hence, two labels 
l and l' are comparable if there is a causal relationship between the sending of the 
corresponding messages m and m', and l < l' if CBC AST (m) -+ CBC AST (m '). 
If there is no causal relationship between CBCAST(m) and CBCAST(m'), then 
the labels l and l' are not comparable. We say that a message m precedes another 
messagem' if CBCAST(m)-+ CBCAST(m'). . 

For supporting CBCAST, a node P contains a buffer BU Fp which contains all 
messages sent to and from P, as well as copies of messages that arrive at P en 
route to other destinations. From the buffer, messages are put on a delivery queue 
from which the application processes can receive the messages. The protocol for 
CBCAST ensures that the messages are added to the delivery queue in an order 
which is consistent with the causal order of messages. 
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When a node P performs a CBCAST(m, l, dests), the message m (along with 
other related information) is added to BU Fp. If P is one of the destination nodes, 
then m is added to the delivery queue of P. Messages in BU F p are later scheduled 
for transmission so that they can reach other destinations. It is assumed that each 
message in the buffer is transmitted in a finite amount of time. 

When a message m is to be transmitted from P to Q, only m is not sent. P 
sends all messages in BU Fp that precede m. In other words, when P wants to send 
m to Q, it sends a transfer packet consisting of a sequence of messages mi, m2, .... 
This transfer packet includes all messages in BU F p that precede m. The messages 
are kept in a sorted order in the transfer packet so that if mi --+ mj, then mi comes 
before mj in the transfer packet (i.e., i < j). 

When a node Q receives a packet mi, m2, .. ., it processes each message mi in 
the transfer packet in the order in which it appears in the packet. For an mi, Q first 
checks if this message is a duplicate (this is done easily by use of sequence numbers). 
If it is a duplicate, the message is discarded. If Q is one of the destination nodes of 
the message mi, then mi is put on the delivery queue of Q. Otherwise mi is simply 
added to BU F Q. 

Let us see how this supports causal broadcasting. Suppose a message m was sent 
by a node P and a message m' was sent by a node Q (nodes Q and P also could 
be the same). If m precedes m', it implies that there is a sequence of broadcasts 
mo, mi, .. ., mn, such that m =mo and m' = mn, and for all i, 0 < i ::::: n, mi-1 
is received by the sender of mi before mi is sent. Since in each broadcast, besides 
the message, all messages in the buffer that precede the message are also sent to 
the destination, it is clear that when mn is sent, the transmission packet will contain 
all messages mo, m1, .. ., mn-1· Each node that receives this packet will deliver m 
before delivering m ', since a node processes the messages in the pac.ket in the order 
they appear. Hence, the causal broadcast property is satisfied. Failures do not affect 
this as long as the network does not get partitioned. 

4.3.2 Causal Broadcast with Total Ordering 

Now we describe a protocol that delivers messages to the different nodes in the same 
order, such that the order preserves the causality between messages [Jal93]. The 
protocol is based on the primary site approach. One of the nodes in the system is 
designated as primary, and k other nodes are designated as backups for a k-resilient 
system. If the primary fails, a backup takes over the role of the primary site. If a 
node wants to broadcast a message, it sends it to the designated primary site (PS), 
which then broadcasts it to other nodes. This approach can easily satisfy the atomic 
broadcast properties. However, supporting causal broadcast is not straightforward, 
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since messages sent by two different nodes, regardless of any causal dependency 
between them, can arrive at the PS in any order. For causal broadcasting, the PS 
has to order the incoming messages in a manner consistent with the causal ordering 
between them. This approach uses a method based on sequence numbers and counters 
for capturing and disseminating information about dependency between nodes. 

Each node i keeps a counter Ci which represents the number of messages that 
this node has sent to PS for broadcast (initialized to 0). The counter is used to assign 
sequence numbers to messages whose broadcast is requested by node i. A node i 
also maintains an array seq[]. This array k;eeps a sequence number for each node, 
such that seq[)] is the sequence number of the last message sent by the node j to PS 
for broadcasting, as known by the node i. Clearly, for a node i, seq[i] represents the 
sequence number assigned by the node i (i.e., the value of Ct) to the last message it 
sent to PS for broadcasting. 

Whenever a node j sends a message to another node i, it sends a copy of the 
array seq[] along with the message. On receiving a message, a node sets its seq[] 

such that each element is the maximum of its local value and the value received in 
the message. That is, if a node receives a new message m it sets: 

Vj: seq[j] = max(seq[j], m.seq[j]). 

At a node i, at a given time, the array seq[] represents the sequence number of the 
last message from each node on which events of this node causally depend. In other 
words, any send command executed by the node i causally depends only on those 

. broadcast messages of node j which were assigned by j a sequence number less 
than or equal to seq[j] at the node i. 

The sequence number assigned by the PS to a broadcast message is represented 
as gseq, and is different from the sequence numbers assigned by the nodes using 
their local counters. The sequence number gseq is used for globally ordering the 
delivery of messages. Each node maintains a variable last-msg, initialized to zero, 
which is the sequence number of the last broadcast message received by this node 
from the PS. This is used to identify and discard duplicate messages. 

The major logical participants in the broadcast protocol are a simple nod.e which 
is a sender and receiver of messages, the primary site, and a backup site (these are 
logical sites; a node may act as a simple node as well as the PS). Here we specify 
the actions that need to be performed by these different parties to support atomic 
broadcast. The actions performed by a simple node are shown in Fig. 4.9. When the 
node i has a message to broadcast, it assigns to seq[i] the value of the local counter 
Ct, adds seq[] to the message, and sends it to the PS. The message is also saved in 
the buffer, in case it is needed for retransmission later on. 
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Node i: 

msg-to-send(msg) ~ 
seq[i] =Ci 
Ci= Ci+ 1 
msg.seq[] = seq[] 
send(PS, msg) 
save msg in buffer 

D request-to-resend(n) ~ 
PS= sender 
send(PS, messages numbered n .. Ci - 1) 

D receive(msg) ~ 
PS =msg.src 
if (msg.gseq ::::_ last-msg) then ignore the message 
else if (msg.original-src = i) delete msg from buffer 

last-msg = msg.gseq 
deliver(msg) 

Figure 4.9: Actions of a sender/receiver node 

If the primary site fails and a backup takes over as the primary, the backup may 
have missed some messages sent by the node to the primary site. In that case, when 
the backup assumes the role of the primary and detects that it has missed some 
messages, it sends ·a request for resending the missed messages. If that request 
comes, the sender retransmits the missed messages to the new primary site (second 
guard). 

Finally, if the node receives a broadcast message (the node is also one of the 
recipients), and if the sequence number assigned to the message by the PS (gseq) is 
less than or equal to the sequence number of the last message received by the node 
from the PS, it implies that this message is a duplicate, and is discarded by the node. 
The primary site is identified as the source of the coming message (represented by 
msg.src). If the original source of the message is this node, then the copy of the 
message is deleted from the buff er, since it will not be needed for retransmissi_on. In 
Fig. 4.9, msg.original-src represents the originator of the message. 

Now let us consider the actions that need to be performed by the primary site. 
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Primary Site: 
receive(msg)-+ 

if expected[msg.src] > msg.seq[msg.src] -+ 
discard the message as duplicate 

else save ms g in buffer 

D3msg in buffer such that (V j 'I msg.src: expected[j] > msg.seqU]) 
and (expected[msg.src] = msg.seq[msg.src])-+ 

addmsg to Qs 
increment expected[msg.src] 

D QB not empty -+ 
take msg at the head of QB 

msg.gseq =Ctr 
to backups in sequence, send (msg and expected[]) 
to other receivers, send(msg) 
Ctr= Ctr+ 1 

Figure 4.10: Actions performed by the primary site 
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The primary site keeps an array called expected[], where expected[i] is the expected 
sequence number of the next message to be received from the node i. In other words, 
the PS has already received messages numbered 0 .. i (expected[i] - 1) from the 
node i for broadcasting. In addition, the PS maint.ains a counter Ctr, which is used 
to assign sequence numbers (gseq) to the broadcast messages. The primary site 
maintains a queue Qs, in which the messages to be broadcast are kept in order. It 
takes the messages from QB and broadcasts them to other sites. It also has a buffer 
in which messages are kept till they can be added to Q 8 . The actions of the PS are 
shown in Fig. 4.10. 

When the PS receives a message from a node for broadcasting, it compares its 
sequence number from what it expects. If the sequence number is less than expected, 
it means that this message is a duplicate (which may arise because of requests to 
resend messages), and is discarded, otherwise the message is put in a buffer. If at 
any time there exists some message msg in the buffer for which msg.seq[msg.src] 
is the same as expected[msg.src] (implying that all previous messages .from this 
node have been received by PS), and msg.seq[j] is less than expected[j] for all other 
nodes j (implying that messages from all other nodes that were "sent before" this 
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Primary Site: 
receive(msg) ~ 

if expected[msg.src] > msg.seq[msg.src] ~ 
discard the message as duplicate 

else save ms g in buffer 

D3msg in buffer such that (V j -:/= msg .src: expected(j] > msg.seqU]) 
and (expected[msg.src] = msg.seq[msg.src]) ~ 

addmsg to Qs 
increment expected[msg.src] 

DQs not empty~ 
take ms g at the head of QB 
msg.gseq = Ctr 
to backups in sequence, send (msg & expected[]) 
to other receivers, send(msg) 
Ctr= Ctr+ 1 

Figure 4.11: Actions performed by the primary site 

message have been received by PS), then msg is added to Qs for broadcasting, and 
expected[msg.src] is incremented. Finally, if Qs is not empty, PS sends the message 
expected[], first to the backups in order, and then to the other nodes. 

Now let us consider the activities which a backup node should do. If the primary 
site and all earlier backups fail, the;n this node has to become the primary site. So, 
first it sets the value of its counter Ctr from the gseq of the last message received 
from the previous PS. The messages that were there in the buffer of the primary 
site at the time of failure are lost and have to be recovered by the backup. For this, 
the backup requests every node j to resend messages with a sequence number more 
than or equal to expected[j]. Note that expected[] at the backup is as obtained from 
the last message by PS to this backup. This ensures that any message from j with a 
sequence number less than expected[j] must have been broadcast by PS earlier. Since 
the backup does not know whether the PS was able to complete broadcasting of the 
last message it received (PS must have completed broadcasting of earlier messages), 
the backup also broadcasts the last message it received from the PS. This may result 
in duplicate messages, but they will be discarded by the receivers by the use of gseq, 
as discussed earlier. It should be pointed out that any failure during the recovery of 
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a backup poses no problems, as long as the assumption about one alive node with 
the message holds. Failure during recovery simply means that the next backup will 
start its own recovery and take over as the primary. 

In this protocol, the PS broadcasts messages one by one in the order in which they 
appear in Qs. The Ctr value assigned by the PS is incremented at each broadcast. 
If PS fails, the backup completes the last broadcast in which PS was involved, and 
starts assigning Ctr values to messages after that. Since the message service ensures 
ordering between a sender and receiver, and all nodes discard duplicates based on 
gseq, all nodes will receive and deliver the messages in the order defined by gseq. 

Hence, it is clear that the protocol does deliver the messages in the same order to 
all nodes. Now let us see how the delivery order of messages is consistent with the 
causal ordering. Suppose mi is the message sent by node i and mj is the message 
sent by node j. If mi __,. m j, it means that either the event for sending mi, or 
some later send event in i, and some receive event in j before sending m j are 
related by a sequence of send-receives. On receiving a message m from another 
node, since a node j sets seq[k] = max(seq[k], m.seq[k]), for all k, it implies that 
mi.seq[i] ::=: mj.seq[i]). As mj is added to Qs only after all messages m from i 
with m.seq[i] less than or equal to mj.seq[i] have been added, clearly mi is added 
beforem j in QB. Since the messages are delivered by the nodes in the order in which 
the PS broadcasts them, and the PS broadcasts messages in the order they appear in 
Q s, the causality condition is satisfied. 

4.4 Summary 

Just like reliable point-to-point communication is a building block for building fault 
tolerant systems that require point-to-point communication, reliable broadcast is a 
building block for those fault tolerant applications that require one process to send 
a message to multiple destinations. The topic of this chapter is the abstraction of 
reliably broadcasting a message in a distributed system. 

For broadcasting, the three properties of interest are reliability, ordering, and 
causality. Reliability requires that a broadcast message reach all the nodes," ordering 
requires that different messages sent by different nodes be delivered to all the nodes in 
the same order, and causality requires that the messages be delivered in an order that 
i; consistent with the causality between them. For satisfying these three properties, 
three different broadcast primitives are needed: reliable broadcast, atomic broadcast, 
and causal broadcast. These primitives and the means of supporting them in a system 
that only supports reliable point-to-point communication, or unreliable broadcast 
communication, are the topic of this chapter. The protocols for these primitives 






