Outline

- Basic approaches to hardware redundancy
- Series/parallel, non-series parallel structures
- Voting
- Hardware voter example
Basic Forms of Hardware Redundancy

- **Error masking**
 - relies on voting to mask the occurrence of errors
 - can operate without need for error detection or system reconfiguration
 - triple modular redundancy (TMR)
 - N-modular redundancy (NMR),

- **Dynamic redundancy**
 - achieves fault tolerance by error detection, error location, and error recovery
 - standby sparing
 - one module is operational and one or more modules serve as standbys or spares

- **Hybrid hardware redundancy**
 - Fault masking used to prevent the system from producing erroneous results
 - Fault detection, location, and recovery used to reconfigure the system in the event of an error.
 - N-modular redundancy with spares.

Hardware Masking Redundancy

- **Masking** employs redundancy to isolate or correct faults before they reach the output
- Logical interconnection of the modules is fixed, hence called “static redundancy”
- When masking redundancy is exhausted, any further fault will cause an error at the output
- Gives no indication of deteriorating hardware state until enough faults have accumulated to cause an error
Dynamic Redundancy

- Involves reconfiguration of system in response to faults
- Reconfiguration often involves disconnecting damaged units from system and doing on-line or off-line repair
- Reconfiguration triggered by internal detection of faults or detection of errors in output
- Success of reconfiguration depends on coverage of detection, diagnosis and confinement, expressed as a combined coverage measure
- Some techniques for detection
 - Self-checking
 - Diagnostic program
 - Watch-dog timer
 - Run sample workload

Evaluation Criteria

- A method of evaluation is required in order to compare the redundancy techniques and make subsequent design tradeoffs
- Modeling techniques are a vital means for obtaining reasonable predictions of system reliability and availability
 - Combinatorial: series/parallel, M-of-N, nonseries/nonparallel
 - Markov: time invariant, discrete time, continuous time, hybrid
 - Queuing
- Using these techniques probabilistic models of systems can be created and used to evaluate system reliability and/or availability
Combinatorial Modeling

- System is divided into non-overlapping modules
- Each module is assigned either a probability of working, P_i, or a probability as function of time, $R_i(t)$
- The goal is to derive the probability, P_{sys}, or function $R_{sys}(t)$ of correct system operation
- Assumptions:
 - module failures are independent
 - once a module has failed, it is always assumed to yield incorrect results
 - system is considered failed if it does not satisfy minimal set of functioning modules

Series Systems

$R_{sys} = R_1 \cdot R_2 \cdot R_3 \cdot \ldots \cdot R_n$

- For exponential failure rate of each component

$$R_{series}(t) = e^{-\sum_{i=1}^{n} \lambda_i t} = e^{-\lambda_{system} t}$$

 - Effect is summation of failure rates of components

$$\lambda_{system} = \sum_{i=1}^{n} \lambda_i$$
Parallel Systems

- Assume system with spares
- As soon as fault occurs a faulty component is replaced by a spare
- Only one component needs to survive for the system to operate correctly

Reliability of the parallel system

\[R_{\text{parallel}}(t) = 1.0 - \prod_{i=1}^{n} (1.0 - R_i(t)) \]

Series-Parallel Systems

- Consider combinations of series and parallel systems
- Example, two CPUs connected to two memories in different ways

\[R_{\text{sys}} = 1 - (1-R_a R_b) (1-R_c R_d) \]

\[R_{\text{sys}} = (1-(1-R_a)(1-R_c))(1-(1-R_b)(1-R_d)) \]
Non-Series-Parallel-Systems

- Often a “success” diagram is used to represent the operational modes of the system

Each path from X to Y represents a configuration that leaves the system successfully operational

\[R_{sys} = R_m \ P \text{ (system works|m works)} + (1 - R_m) \ P \text{ (system works|m fails)} \]

where the notation \(P(s|m) \) denotes the conditional probability “s given m has occurred”

- Reliability of the system can be derived by expanding around a single module \(m \)

Non-Series-Parallel-Systems (cont.)

\[R_{sys} = R_B \ P \text{ (system works|B works)} + (1 - R_B) \left\{ R_D \left[1 - (1 - R_A R_E)(1 - R_B R_C) \right] \right\} \]

Letting all \(R \)'s = \(R_m \) yields

\[R_{sys} = R_m^6 - 3R_m^5 + R_m^4 + 2R_m^3 \]
Non-Series-Parallel-Systems (cont.)

- For complex success diagrams, an upper-limit approximation on R_{sys} can be used:
 $$R_{sys} \leq 1 - \prod (1 - R_{path\ i})$$
 $R_{path\ i}$ is the serial reliability of path i.

- An upper bound on system reliability is:
 $$R_{sys} \leq 1 - (1 - R_A R_B R_C R_D)(1 - R_A R_E R_D)(1 - R_F R_C R_D)$$
 $$R_{sys} \leq 2R_m^3 + R_m^4 - 2R_m^7 + R_m^{10}$$

The above equation is an upper bound because the paths are not independent. That is, the failure of a single module affects more than one path.

M-out-of-N Systems

- Static or masking redundancy

- For general M-out-of-N system

- Out of N modules, need M to function

$$R_{MN} = \sum_{i=0}^{M-N} \binom{N}{i} R_m^{N-i} (1 - R_m)^i$$
Cascading TMR Systems

- Consider n stages of original system
- Each stage replaced by TMR with Voter

Reliability of the system

\[R_{\text{cascade}} = \left(R_v \left(R_m^3 + \frac{3}{2} R_m^2 (1 - R_m) \right) \right)^n \]

TMR with 3 Voters

- Remove single point of failure
- Use TMR with 3 voters
- Cascade such systems

Consider (n-1) voter-module combinations in the middle

\[R_{\text{vm}} = (3R_m^2 - 2R_m^3) \]

\[R_{\text{vm}} = R_v R_m \]

\[R_{\text{sys}} = (3R_m^2 - 2R_m^3) \cdot R_{\text{n-1 stages}} \cdot (3R_v^2 - 2R_v^3) \]
Coding based Detection and Correction

- **Parity**
 - Can detect an odd number of bits in error
 - Cannot correct any error
- **Single error correction, Double error detection code**
 - 4 data bits
 - 4 parity bits
- **Theorems**
 - To detect all d bit errors (or fewer), Hamming distance of code $\geq d+1$
 - To correct all c bit errors (or fewer), Hamming distance of code $\geq 2c+1$
 - To correct all c bit errors (or fewer) and detect all $c+d$ bit errors (or fewer), Hamming distance of code $\geq 2c+d+1$

Pitfalls Using Single Metric

- Compare reliability of simplex and TMR systems

\[
R_{\text{simplex}}(t) = e^{-\lambda t}
\]

\[
MTTF_{\text{simplex}} = \int_0^\infty e^{-\lambda t} dt = 1 / \lambda
\]

\[
R_{\text{TMR}}(t) = e^{-3\lambda t} + \left(\frac{3}{2}\right)e^{-2\lambda t} (1 - e^{-\lambda t})
\]

\[
MTTF_{\text{TMR}} = \frac{3}{2\lambda} - \frac{2}{3\lambda} = \frac{5}{6\lambda}
\]

\[MTTF_{\text{simplex}} > MTTF_{\text{TMR}}\]
Pitfalls Using Single Metric (cont.)

- Instead of MTTF, look at mission time
- Reliability of M-out-of-N systems very high in the beginning
 - spare components tolerate failures
- Reliability sharply falls down in end
 - system exhausted redundancy, more hardware can possibly fail
- Such systems useful in aircraft control
 - very high reliability, short time
 - 0.99999 over 10 hour period
- Used in FTMP and SIFT multiprocessors
Effect of Coverage

- Failure detection is not perfect
- Reconfiguration may not succeed
- Attach a coverage “c” includes chance for successful detection and switching

One spare system
\[R_{\text{sys}} = R_1 + c \,(1-R_1) \, R_2 \]
n-1 spare system
\[R_{\text{sys}} = R_m \sum_{i=0}^{n-1} c^i \,(1 - R_m)^i \]

Effect of Coverage (cont.)

- If coverage is 100%, then given low module reliability, can increase system reliability arbitrarily

<table>
<thead>
<tr>
<th>C</th>
<th>Rm = 0.9</th>
<th>Rm = 0.7</th>
<th>Rm = 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99, n=2</td>
<td>0.989</td>
<td>0.908</td>
<td>0.748</td>
</tr>
<tr>
<td>0.99, n=4</td>
<td>0.999</td>
<td>0.988</td>
<td>0.931</td>
</tr>
<tr>
<td>0.99, n=inf</td>
<td>0.999</td>
<td>0.996</td>
<td>0.990</td>
</tr>
<tr>
<td>0.8, n=2</td>
<td>0.972</td>
<td>0.868</td>
<td>0.700</td>
</tr>
<tr>
<td>0.8, n=4</td>
<td>0.978</td>
<td>0.918</td>
<td>0.812</td>
</tr>
<tr>
<td>0.8, n=inf</td>
<td>0.978</td>
<td>0.921</td>
<td>0.833</td>
</tr>
</tbody>
</table>

With low coverage, reliability saturates
Voting in Hardware & Software

- Guarantee majority vote on the input data to the voter
- Ability of detecting own errors (self-checking)
- Determine the faulty replica/node (building the exclusion logic)
- Voting in networked systems (software)
 - requires synchronization of inputs to the voter
 - may be difficult to determine voter timeout
 - different relative speed of machines
 - varying network communication delays
- Voting in hardware systems
 - generally does not require an external synchronization of inputs to the voter
 - lock step mode or loosely synchronized mode
 - CPUs internally can be out of synch because of non-deterministic execution of instructions

Example: FTMP (Fault Tolerant Multi Processor)

- Triads of processor-cache do processing
- Triads of memory store data
- Voting done on bus for memory accesses
- System bus is made redundant
- If failure detected
 - Triads recreated with spares
 - Triads broken up and good ones returned to spare pool
Reference

- Today’s material from Siewiorek-Swarz Chapter 3, pp. 138-146, pp. 169-193