Diana Milena Ramirez Gutierrez

7107

ramiri20@purdue.edu, west Lalayette, IN, 47906, pl	none: (765) 701 7127
EDUCATION	
Doctor of Philosophy in Agricultural and Biological Engineering	Expected Graduation: December 2022
Purdue University, West Lafayette, IN	
Advisor: Dr. Michael Ladisch	• • • •
Master of Science in Agricultural and Biological Engineering	2019
Purdue University, West Lafayette, IN	GPA:3.5/4
Advisor: Dr. Klein heleji Paabalar's Degree Agricultural Engineering	2017
bachelor's Degree, Agricultural Engineering	2016
National University of Colombia, Bogotá, Colombia	GPA:3.9/5
RESEARCH PROJECTS	
Biomass Liquefaction by enzymatic hydrolysis -US Department of E	nergy (DOE)
PhD Project	2020- Present
Purdue University, WL, IN	
- Development of a strategy for large scale production and transfo	rmation of biomass pellets and aggregates
using enzymatic liquefaction in partnership with the INL (Idaho N	lational Lab)
- Characterization of biomass chemical composition and rheology pr	onerties
Improving the liquefaction officiancy by identifying the best pro-	ass parameters and reduction of anzymatic
inhibition	ess parameters and reduction of enzymatic
Solar drying technologies for medium growers of specialty crops in C	seorgia, California, and Indiana.
Master's project	2017 – 2019
Purdue University, WL, IN	
- Modeled the drying kinetics of dehydration performance in specialty	crops (tomato, apples, and mint) using two
solar crop drying technologies (DEHYTRAY ^{IM} and DEHYMELEC	$\mathbf{D}\mathbf{N}^{\mathrm{IM}}$ and by thin layer drying after diurnal
cycles of solar drying.	
- Characterized the product quality of dried specialty crops, based on	on color, antioxidant activity (AOX), total
- Developed extension activities with Indiana and California form	inicioulal coullis.
- Developed extension activities with indiana and California fami technologies	iers for training on the usage of drying
Testing of a novel Solar Drving Technology Purdue – California US	DA-ARS Lab Collaboration
Research Visitor	8/2018

USDA -ARS Western Regional Research Center: Albany, CA

Measured quality changes on fresh and dehydrated products (tomatoes and nectarines), on Vitamin C, antioxidant activity, total phenols, and microbial growth variation.

Development of a Solar Dryer Technology for developing countries in Africa

Visiting Research Scholar

Agricultural and Biological Engineering Dept., Purdue University, WL, IN

- Led the design process of a foldable tray for a solar dryer, selecting materials and structure.
- Carried thin layer drying experiments for the understanding of drying kinetics at certain temperatures on field for the development of the drying technology.

PROFESSIONAL EXPERIENCES

Faculty of Engineering, National University of Colombia, Bogotá

Project Coordinator "Technologies and product design for the support of logistics systems for fresh products in the Cundinamarca Region".

- Led the engineering team to develop postharvest and harvesting tools as well as technologies for recollecting systems, sanitation and classification systems, packaging innovations and exhibition of 21 different agricultural products.
- On site analysis of rural areas for recognition of the challenges of postharvest and harvesting practices on field, and the transfer of the developed technologies to small and medium farmers.

6/2015-12/2015

01/2016 -06/2017

SKILLS

Software: ANSYS, Origin Pro, Minitab, COMSOL, RStudio, Phyton and Assembler. *Laboratory:* Wet chemistry analysis techniques, food microbiology, and food physical properties analysis, HPLC. *Certifications:* Management of Rural and Agricultural Innovation. National University of Colombia (2016-2017) *Languages: English (Fluent), Spanish (Native), Portuguese (Intermediate)*

LEADERSHIP EXPERIENCES

Spring 2021
2019-2020
2018-2019
2018

PUBLICATIONS & CONFERENCE PROCEEDINGS

Ruiz, H.A., Galbe, M., Garrote, G., **Ramirez-Gutierrez, D.M.**, Ximenes, E., Sun, S., Lachos-Perez, D., Rodríguez-Jasso, R.M., Sun, R., Yang, B., Ladisch, M.R.(2021). *Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam and liquid hot water treatments) for biomass fractionation under biorefinery concept.* BITE-D-21-05405. Bioresource Technology. In press

Dos Santos, A. C. F., Overton, J. C., Szeto, R., Patel, M. H., **Ramirez-Gutierrez, D. M.,** Eby, C., ... & Ladisch, M. R. (2021). *New strategy for liquefying corn stover pellets*. Bioresource Technology, 125773.

Ramirez-Gutierrez, D. M., K. E. Ileleji and A.J. Deering. 2021. *Evaluation of novel portable passive and cabinet solar dryers in sun drying of mint leaves under Indiana weather conditions*. Trans ASABE,(in press)

D.M Ramirez-Gutierrez, K. E Ileleji, Zusongying Zhao, C. Ogden. 2018. *Applying thin-layer drying principles to optimize solar drying of apples*. Paper 1800847, 2018 ASABE Annual International Meeting. Detroit.

Zusongying Zhao, Klein Erhekabor Ileleji, **D.M Ramirez**, Zhian Zheng. 2018. *Effect of pretreatment on allicin degradation and color change in the dehydration of garlic*. Paper 1800951, 2018 ASABE Annual International Meeting. Detroit.

C.P. Pérez, J.E Naranjo, **D.M. Ramírez**, A. E Jaimes, J. D. Arévalo Arias). 2017. *Characterization of an agricultural area of Cundinamarca, its problems, and possible solutions*. Logistics Facing Challenges of Food Security and Environmental Protection. International Forum on Agri-Food Logistics. Poznań University of Life Sciences ISBN: 978-83-7160-866-7 Poland.

A.L Rodriguez, Y. Ortiz, YP Ochoa, A. Barrero, **D.M Ramirez**, G. Montano, RA Ramirez, F. Parada, CP Pérez. 2014. *Effect of the application of UV-B radiation in the essential oil of peppermint (Mentha spicata L.).* XV Latin American Congress of Chromatography and Related Techniques and VII Colombian Congress of Chromatography - Cartagena de Indias, Colombia.

PATENTS

Klein E. Ileleji; Jesumayomikun Lumi; Diana M. Ramirez Gutierrez. 2018, Modular Collapsible Solar Dryer for Multipurpose Drying. Patent Number US 10746464 . August.8, 2018.

AWARDS & SCHOLARSHIPS

Best Poster Award-Colombian Gian Leaps – Colombia Purdue -2020 Research Symposium	8/2020
Scholarship Attendance Conference Latinos Leaders in Agriculture. Dallas	11/2018
Poster Award-2 nd Place- Conference Innovation for International Development (I2D) Lab - Purdue	2018

Diana Milena Ramirez Gutierrez (*Email*: ramir120@purdue.edu; *Cell*: 765-701-7127)