Research Projects

Projects are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2018 Research Symposium Abstracts.

2019 projects will continue to be posted through January!

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:

Other

 

Building Software for Environmental Modeling

Research categories:  Agricultural, Computer Engineering and Computer Science, Environmental Science, Other
School/Dept.: Agricultural and Biological Engineering
Professor: Dharmendra Saraswat
Preferred major(s): Agricultural Engineering , Civil Engineering, Computer Science or related disciplines
Desired experience:   Programming skills in any language with some experience in frontend and backend web development is desired.

Agricultural and Biological Engineering Department has contributed several tools for environmental modeling community. It is a challenge to review and understand old codes with minimum documentation. This project involves modernizing an environmental modeling software written primarily in Perl. In this project, the SURF student will first assess the current application, create a plan for the new iteration in collaboration with the project supervisor, get a head start on developing the new application and document the process. The SURF student will work with a staff programmer.

 

Data Visualization and Analysis for IoT Based Smart Irrigation System

Research categories:  Agricultural, Civil and Construction, Computer Engineering and Computer Science, Environmental Science, Other
School/Dept.: Agricultural and Biological Engineering
Professor: Dharmendra Saraswat
Preferred major(s): Agricultural Engineering, Civil Engineering, Environmental Engineering, Computer Science or related disciplines
Desired experience:   Programming skills in any language with some experience in statistics is desired.

It is reported that currently almost 33 percent of the global population is affected by water scarcity and by 2030, this figure is expected to climb up to almost 50 percent. Around 60 percent of the water used for irrigation is wasted, either due to evapotranspiration, land runoff, or simply inefficient, primitive irrigation application methods. This realization has brought attention to smart irrigation – powered by the internet of things (IoTs) – that can be a better way of managing water stress on a global basis. In this project, the SURF student will customize commercially available software to analyze and visualize data, perform calculations/combine new data, run time-based calculations, plot functions for visual understanding and perform sophisticated analysis by combining data from several field nodes. The SURF student will work with Project Supervisor and a staff programmer.

 

Design and Analysis of Novel Approaches for Packaging of Li-Ion Batteries for Automotive Applications

Research categories:  Computational/Mathematical, Mechanical Engineering, Mechanical Systems, Other
School/Dept.: School of Mechanical Engineeing
Professor: Thomas Siegmund
Preferred major(s): Mechanical Engineering

E-mobility is a key driver of future transportation systems. E-vehicles rely on energy storage in batteries, and such batteries packages need to be integrated into the overall vehicle structure under consideration of structural and thermal design considerations. This research project will advance novel solutions to do so. The SURF student will work on CAD model design, simulations and experiments on simulated Li-ion battery packages for mechanical and thermal safety.

 

Network for Computational Nanotechnology (NCN) / nanoHUB

Research categories:  Chemical, Computational/Mathematical, Computer Engineering and Computer Science, Electronics, Material Science and Engineering, Mechanical Systems, Nanotechnology, Other
Professor: NCN Faculty
Preferred major(s): Electrical, Computer, Materials, Chemical or Mechanical Engineering; Chemistry; Physics; Computer Science; Math
Desired experience:   Serious interest in and enjoyment of programming; programming skills in any language. Physics coursework.

NCN is looking for a diverse group of enthusiastic and qualified students with a strong background in engineering, chemistry or physics who can also code in at least one language (such as Python, C or MATLAB) to work on research projects that involve computational simulations. Selected students will typically work with a graduate student mentor and faculty advisor to create or improve a simulation tool that will be deployed on nanoHUB. Faculty advisors come from a wide range of departments: ECE, ME, Civil E, ChemE, MSE, Nuclear E, Chemistry and Math, and projects may be multidisciplinary. To learn about this year’s research projects along with their preferred majors and requirements, please go to the website noted below.

If you are interested in working on a nanoHUB project in SURF, you will need to follow the instructions below. Be sure you talk about specific NCN projects directly on your SURF application, using the text box for projects that most interest you.

1) Carefully read the NCN project descriptions (website available below) and select which project(s) you are most interested in and qualified for. It pays to do a little homework to prepare your application.

2) Select the Network for Computational Nanotechnology (NCN) / nanoHUB as one of your top choices.

3) In the text box for Essay #2, where you describe your specific research interests, qualifications, and relevant experience, you may discuss up to three NCN projects that most interest you. Please rank your NCN project choices in order of interest. For each project, specify the last name of the faculty advisor, the project, why you are interested in the project, and how you meet the required skill and coursework requirements.

For more information and examples of previous research projects and student work, click on the link below.