Research Projects

Projects for 2017 are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2016 Research Symposium Abstracts.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list, or view only projects in the following categories:

Environmental Science


Purdue AirSense: Creating a State-of-the-Art Air Pollution Monitoring Network for Purdue

Research categories:  Agricultural, Aerospace Engineering, Bioscience/Biomedical, Chemical, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Educational Research/Social Science, Electronics, Environmental Science, Industrial Engineering, Innovative Technology/Design, Life Science, Material Science and Engineering, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: Civil Engineering
Professor: Brandon Boor
Preferred major(s): Any engineering, science or human health major.
Desired experience:   Motivation to learn about, and solve, environmental, climate, and human health issues facing our planet. Past experience: working in the lab, analytical chemistry, programming (Matlab, Python, Java, LabVIEW, HTML), electronics/circuits, sensors.
Number of positions: 1-2

Air pollution is the largest environmental health risk in the world and responsible for 7 million deaths each year. Poor air quality is a serious issue in rapidly growing megacities and inside the homes of nearly 3 billion people that rely on solid fuels for cooking and heating. Join our team and help create a new, multidisciplinary air quality monitoring network for Purdue - Purdue AirSense. You will have the opportunity to work with state-of-the-art air quality instrumentation and emerging sensor technologies to monitor O3, CO, NOx, and tiny airborne particulate matter across the campus. We are creating a central site to track these pollutants in real-time on the roof-top of Hampton Hall, as well as a website to stream the data to the entire Purdue community for free. 4-5 students will be recruited to work as a team on this project, which is led by Profs. Brandon Boor (CE) & Greg Michalski (EAPS).


Wideband GNSS Reflectometry Instrument Design and Signal Processing for Airborne Remote Sensing of Ocean Winds.

Research categories:  Aerospace Engineering, Computer Engineering and Computer Science, Electronics, Environmental Science, Physical Science, Other
School/Dept.: AAE
Professor: James Garrison
Preferred major(s): Electrical Engineering, Physics
Desired experience:   Linear Systems, Signal processing, computer programming (C, Python, MATLAB). Some experience building computers or electronics is desirable. A basic understanding of electromagnetism is also desirable.
Number of positions: 1

This research project will involve the assembly and test a remote sensing instrument to make measurements of the ocean wind field from the NOAA “Hurricane Hunter” aircraft. The fundamental operating principle of this new instrument is “reflectometry”, which is based upon observing changes in the structure of a radio frequency signal reflected from the ocean surface. These changes are related to the air-sea interaction process on the ocean surface and can be used to estimate the wind speed through empirical models. Transmissions from the Global Navigation Satellite System (GNSS), (e.g. GPS, Galileo, Glonass or Compass) are ideal signal sources for reflectometry, due to their use of a “pseudorandom noise” (RRN) code.

NASA will be launching the CYGNSS satellite constellation in November to globally monitor the tropical ocean and observe the formation of severe storms. CYGNSS will use a first generation GNSS-R instrument. This summer research project will produce a next-generation prototype taking advantage of the wider bandwidth of the Galileo E5 signal (~90 MHz vs. 2 MHz) for higher resolution measurements of the reflected signal.

In addition to hardware assembly and testing in the laboratory, this research project will also require the development of signal processing algorithms to extract essential information from the scattered signal. A “software defined radio” approach will be used, in which the full spectrum of the reflected signal is recorded and post-processed using software to implement the complete signal processing chain.

The goal of this summer research project is to deliver a working instrument, post processing software, and documentation to NOAA for flight on the hurricane aircraft during the 2017 hurricane season. There are two objectives of this experiment. The first is to demonstrate the feasibility of wideband E5 reflectometry measurements. The second objective is to collect the highest quality GNSS reflectometry data, under a wide variety of extreme meteorological conditions, to improve the empirical models that will be used for processing CYGNSS data and generating hurricane forecasts.

Students interested in this project should have good programming skills and some experience with C, Python and MATLAB. They should also have a strong background in basic signal processing. Experience with building computers or other electronic equipment will also be an advantage.

More information: