Research Projects

Projects are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2018 Research Symposium Abstracts.

2019 projects will continue to be posted through January!

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:



3D Printed Mobile Microrobots

Research categories:  Mechanical Engineering, Nanotechnology
School/Dept.: Mechanical Engineering
Professor: David Cappelleri
Preferred major(s): ME, ECE, ChE
Desired experience:   Junior standing or higher, 3D printing experience, electrical circuits experience, CAD design fluency, programming experience.

In this project, the student will be tasked with using a state-of-the-art two photon polymerization (TPP) 3D printer to fabricate mobile microrobots for biomedical and manufacturing applications. A new technique will be developed for printing with photoresist with embedded magnetic particles and aligning the particles during the 3D printing process. The student will explore various micro-3D printer settings and evaluate them for different microrobot designs. The mobile microrobots produced will be tested with an external magnetic field generating system.

More information:


Computational Modeling of Photon Transport in Nanocomposites

Research categories:  Computational/Mathematical, Material Science and Engineering, Mechanical Engineering, Nanotechnology
School/Dept.: Mechanical Engineering
Professor: Xiulin Ruan
Preferred major(s): Mechanical Engineering, Materials Sciences, Physics, Electrical Engineering, Computational Engineering
Desired experience:   The student should have an intermediate level of scientific computing experience (i.e. MATLAB or Python knowledge), strong analytical and numerical skills, and an interest in parallel computing. Completed coursework in Physics (Electricity & Magnetism) and Heat Transfer will be helpful, but not required.

This project will aid in an ongoing effort to achieve ultra-efficient nanocomposites for radiative cooling applications. Achieving radiative cooling requires engineering optical properties of nanocomposites to reflect and emit in certain regions. This work will focus on how to optimize the nanocomposites through computational modeling to achieve the optimal optical properties.


Indoor Air Pollution Research: From Nano to Bio

Research categories:  Agricultural, Bioscience/Biomedical, Chemical, Civil and Construction, Environmental Science, Life Science, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: Civil Engineering
Professor: Brandon Boor
Preferred major(s): Students from all majors are welcome to apply.
Desired experience:   Interest in studying contaminant transport in the environment, human health, air pollution, HVAC and building systems, microbiology, nanotechnology, and atmospheric science. Experience working in a laboratory setting with analytical equipment and coding with MATLAB, Python, and/or R. Passionate about applying engineering fundamentals to solve real-world problems.

Airborne particulate matter, or aerosols, represent a fascinating mixture of tiny, suspended liquid and solid particles that can span in size from a single nanometer to tens of micrometers. Human exposure to aerosols of indoor and outdoor origin is responsible for adverse health effects, including mortality and morbidity due to cardiovascular and respiratory diseases. The majority of our respiratory encounters with aerosols occurs indoors, where we spend 90% of our time. Through the SURF program, you will work on several ongoing research projects exploring the dynamics of nanoaerosols and bioaerosols in buildings and their HVAC systems.

Nanoaerosols are particles smaller than 100 nm in size. With each breath of indoor air, we inhale several million nanoaerosols. These nano-sized particles penetrate deep into our respiratory systems and can translocate to the brain via the olfactory bulb. These tiny particles are especially toxic to the human body and have been associated with various deleterious toxicological outcomes, such as oxidative stress and chronic inflammation in lung cells. Bioaerosols represent a diverse mixture of microbes (bacteria, fungi) and allergens (pollen, mite feces). Exposure to bioaerosols plays a significant role in both the development of, and protection against, asthma, hay fever, and allergies.

Your role will be to conduct measurements of nanoaerosols and bioaerosols in laboratory experiments at the Purdue Herrick Laboratories, as well as participate in a field campaign at Indiana University - Bloomington in collaboration with an atmospheric chemistry research group. You will learn how to use state-of-the-art air quality instrumentation and perform data processing and analysis in MATLAB.

More information:


Micro/nano Scale 3D Laser Printing

Research categories:  Mechanical Engineering, Mechanical Systems, Nanotechnology
School/Dept.: Mechanical Engineering
Professor: Xianfan Xu
Preferred major(s): Mechanical Engineering, Physics, Materials Engineering, Chemical Engineering, Electrical Engineering
Desired experience:   Junior or Senior standing, GPA>3.6

The ability to create 3D structures in the micro and nanoscale is important in many fields including electronics, microfluidics, and tissue engineering and is an emerging area of research and development. This project deals with the development and testing of a setup for building microscopic 3D structures with the help of a femtosecond laser. A method known as two photon polymerization is typically used to fabricate such structures in which a polymer is exposed to laser and at the point of the exposure the polymer changes its structure. Moving the laser in a predefined path helps in getting the desired shape and the structures are then built in a layer by layer fashion. The setup incorporates all the steps from a designing a CAD model file to slicing the model in layers to generating the motion path of the laser needed for fabricating the structure. In order to make a solid and stable structure, investigation of better materials and optimization of the process parameters is needed. Besides, possible improvements to the control algorithms used in the setup can be done to increase the efficiency of the process and build the structures faster.


Optimization of Quantum Circuits for Noisy Environments

Research categories:  Electronics, Nanotechnology, Physical Science
School/Dept.: ECE
Professor: Andrew Weiner
Preferred major(s): Electrical Engineering, Physics or any closely related major
Desired experience:   (a) Experience using Matlab or Python for instrument control is strongly preferred. (b) Electricity and Magnetism coursework preferred

Our research group works on encoding and processing quantum information in the frequency domain. The platform we work with – biphoton frequency combs (BFCs) – are photon pairs that are entangled in time and energy (frequency). We use commercial hardware like phase modulators and pulse shapers for quantum state preparation and manipulation. Some recent demonstrations include measurement of high dimensional frequency-bin entanglement and tunable quantum gates, among others. Our current efforts are focused on developing quantum circuits to simulate the dynamics of molecules.

The SURF student’s contribution would be as follows:
(1) Develop an instrument control interface to automate the process of quantum state preparation. In particular, we often use commercial pulse shapers to “carve” BFCs from a continuous down conversion spectrum. However, carving a BFCs requires precise positioning of frequency bins in order to ensure that one passes energy-matched (anti-correlated in frequency) comb line pairs. The student would automate this process by interfacing with the pump laser, pulse shaper, and single photon detectors and implementing appropriate instrument control.

(2) What we often measure in our quantum experiments is coincident single photon detection events or, simply, coincidences. However, the number of coincidences depends on factors like loss in the experimental system, the timing jitter of single photon detectors, and the resolution of the timing electronics. The student will carry out a systematic study to evaluate the effect of these factors on the coincidence rate out of a quantum circuit and make recommendations on how to optimize the detection system for high coincidence rates or high coincidence-to-accidental ratios (analogous to signal to noise ratio).


Photonic Component Design for Quantum and Classical Information Processing

Research categories:  Electronics, Nanotechnology, Physical Science
School/Dept.: ECE
Professor: Andrew Weiner
Preferred major(s): Electrical Engineering, Physics or any closely related major
Desired experience:   (a) U.S. citizenship, (b) Electricity and Magnetism coursework preferred

Photons are ideal carriers of quantum information because they are robust against decoherence and are compatible with fiber optic networks. Our research group works on encoding and processing quantum information in the frequency domain. One limitation of conventional or bulk optical equipment is that these devices have high optical losses, which is a major issue for applications in the quantum regime. We recently designed photonic integrated circuits to implement elementary quantum gates and carry out operations like parallel single qubit rotations.

The SURF student’s contribution would be as follows:
(1) Design and simulate photonic elements (microresonators for generation of Kerr and quantum frequency combs, pulse shapers, etc.) for our next round of chip fabrication. The student will be given performance specifications and be expected to use analytical expressions, as well as FDTD and/or FEM simulation tool, and come up with recommendation for appropriate device geometries.

(2) Characterize on-chip optical devices/systems and relate actual performance in our first batch of chips to the original design specifications. Depending on the student’s level of experience, he/she will collect data from our testbed, compare it to the design specifications, and draw appropriate inferences from the data.