Skip navigation

Research Projects

Projects are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2017 Research Symposium Abstracts.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list, or view only projects in the following categories:

Nanotechnology

 

Developing Cost-Effective Thermoelectric Materials for Civil Infrastructure Applications

Research categories:  Civil and Construction, Material Science and Engineering, Nanotechnology
School/Dept.: Civil Engineering
Professor: Luna Lu

The objective of this funding request is to support one (1) undergraduate student participating in Dr. Lu’s research in developing cost effective thermoelectric (TE) materials during Summer 2017. TE materials offer great promise for energy efficient power generation in civil infrastructures, such as waste heat recovery from HVAC systems and building envelopes etc. However, current applications are significantly limited by the high cost and toxicity of existing TE materials.

The recruited undergraduate students will work directly with a PhD student and supervised by Dr. Lu. The candidate will benefit from working in an interdisciplinary research group and will be exposed to state-of-art nanofabrication and analytical tools. The specific responsibilities include synthesizing and characterization of nanomaterials and devices.

The applicant should have technical background in materials science and engineering, civil engineering, chemistry, chemical engineering or a related area. The applicant should be highly motivated, able to work in team, and have good oral and written communication skills.

 

Experimental Optics of Quantum Emitters

Research categories:  Nanotechnology, Physical Science
School/Dept.: Electrical and Computer Engineering
Professor: Zubin Jacob
Preferred major(s): Physics or Electrical Engineering
Desired experience:   One course on electromagnetic waves. Experimental experience in machining, optics, instrument control, microcontroller programming, instrument-matlab interfaces etc. is very useful.

This project deals with understanding optical properties of quantum emitters. The undergraduate student will work in the Birck Nanotechnology Center Experimental laboratory in Quantum Optics. This work can lead to novel light sources with quantum properties beyond traditional lasers. It is expected that the student will have considerable interest in daily experimental work in understanding lenses, mirrors, aligning lasers, machine-shop 3D printing etc. etc. The interested student will work with a team of motivated PhD students and post-doctoral scholars for a productive summer. More details can be found at www.zjresearchgroup.org

 

Micro/nano scale 3D laser printing

Research categories:  Nanotechnology
School/Dept.: Mechanical Engineering
Professor: Xianfan Xu
Preferred major(s): Mechanical Engineering
Desired experience:   Junior or Senior standing, GPA > 3.5

The ability to create 3D structures in the micro and nanoscale is important in many fields including electronics, microfluidics, and tissue engineering and is an emerging area of research and development. This project deals with the development and testing of a setup for building microscopic 3D structures with the help of a femtosecond laser. A method known as two photon polymerization is typically used to fabricate such structures in which a polymer is exposed to laser and at the point of the exposure the polymer changes its structure. Moving the laser in a predefined path helps in getting the desired shape and the structures are then built in a layer by layer fashion. The setup incorporates all the steps from a designing a CAD model file to slicing the model in layers to generating the motion path of the laser needed for fabricating the structure. In order to make a solid and stable structure, investigation of better materials and optimization of the process parameters is needed. Besides, possible improvements to the control algorithms used in the setup can be done to increase the efficiency of the process and build the structures faster.

 

Network for Computational Nanotechnology (NCN) / nanoHUB

Research categories:  Chemical, Computational/Mathematical, Computer Engineering and Computer Science, Electronics, Material Science and Engineering, Mechanical Systems, Nanotechnology, Other
Professor: NCN Faculty
Preferred major(s): Electrical, Computer, Materials, Chemical or Mechanical Engineering; Chemistry; Physics; Computer Science; Math
Desired experience:   Serious interest in and enjoyment of programming; programming skills in any language. Physics coursework.

NCN is looking for a diverse group of enthusiastic and qualified students with a strong background in engineering, chemistry or physics who can also code in at least one language (such as Python, C or MATLAB) to work on research projects that involve computational simulations. Selected students will typically work with a graduate student mentor and faculty advisor to create or improve a simulation tool that will be deployed on nanoHUB. Faculty advisors come from a wide range of departments: ECE, ME, Civil E, ChemE, MSE, Nuclear E, Chemistry and Math, and projects may be multidisciplinary. To learn about this year’s research projects along with their preferred majors and requirements, please go to the website noted below.

If you are interested in working on a nanoHUB project in SURF, you will need to follow the instructions below. Be sure you talk about specific NCN projects directly on your SURF application, using the text box for projects that most interest you.

1) Carefully read the NCN project descriptions (website available below) and select which project(s) you are most interested in and qualified for. It pays to do a little homework to prepare your application.

2) Select the Network for Computational Nanotechnology (NCN) / nanoHUB as one of your top choices.

3) In the text box for Essay #2, where you describe your specific research interests, qualifications, and relevant experience, you may discuss up to three NCN projects that most interest you. Please rank your NCN project choices in order of interest. For each project, specify the last name of the faculty advisor, the project, why you are interested in the project, and how you meet the required skill and coursework requirements.

For more information and examples of previous research projects and student work, click on the link below.

 

Purdue AirSense: An Air Pollution Sensing Network for West Lafayette

Research categories:  Agricultural, Chemical, Civil and Construction, Computer Engineering and Computer Science, Electronics, Environmental Science, Innovative Technology/Design, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: Civil Engineering
Professor: Brandon Boor
Preferred major(s): The position is open to students from all STEM disciplines.
Desired experience:   Proficient in Python, Java, MATLAB; experience with Raspberry Pi or Arduino.

Air pollution is the largest environmental health risk in the world and responsible for 7 million deaths each year. We are presently developing a new air pollution sensing network for the Purdue campus to monitor and analyze air pollutants in real-time. We are recruiting an undergraduate student to assist with the development of our Raspberry Pi-based air quality sensor module. You will be responsible for integrating the Raspberry Pi with air quality sensors, developing laboratory calibration protocols, building an environmental enclosure for the sensors, creating modules on our website for real-time data analysis and visualization, and maintaining state-of-the-art aerosol instrumentation at our central air quality monitoring site at the Purdue Agronomy Center for Research and Education (ACRE).