Research Projects

Projects for 2017 are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2016 Research Symposium Abstracts.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list, or view only projects in the following categories:

Material Science and Engineering


2D nanostructures for energy application

Research categories:  Chemical, Material Science and Engineering, Nanotechnology, Physical Science
School/Dept.: Chemistry
Professor: Libai Huang
Preferred major(s): Chemistry, Chemical Engineering
Number of positions: 1

Energy transport will be studied across multiple length and time scales to in 2D semiconductors for solar energy applications. Exciton populations and dynamics following photoexcitation will be investigated using time-resolved spectroscopy.

The main goal of the SURF project will be on using 2D nanostructures as light absorbers for solar energy conversion devices such as solar cells. These 2D nanostructures are extremely efficient light absorbers and emitters. The student will carry out optical spectroscopy and microscopy measurements to study the electronic and optical properties of these materials. The student will also analyze data and present results at group meetings.


Advanced characterization of persistent slip bands in fatigued Ni-based superalloys

Research categories:  Aerospace Engineering, Material Science and Engineering
School/Dept.: MSE
Professor: Michael Titus
Preferred major(s): MSE
Desired experience:   Basic knowledge of: crystallography, dislocations, fatigue in metals, electron microscopy (not required, but appreciated)
Number of positions: 1

The student will use scanning electron microscopy in combination with electron channeling contrast imaging to characterize dislocations and persistent slip bands in fatigued Ni-based superalloys. The student will gain hands on experience using state-of-the art electron microscopy equipment. No prior experience is necessary but is appreciated.


Center for Materials Under Extreme Environment (CMUXE) - Undergraduate research opportunities

Research categories:  Bioscience/Biomedical, Computational/Mathematical, Material Science and Engineering, Nanotechnology, Physical Science
School/Dept.: Nuclear Engineering
Professor: Ahmed Hassanein
Desired experience:   Minimum GPA 3.5
Number of positions: 3-4

The Center for Materials Under Extreme Environment (CMUXE) is looking for undergraduate research students for the following areas:

1. Ion beams and plasma interaction with materials for various applications
2. Magnetic and Inertial Nuclear Fusion
3. Laser-produced plasma (LPP) and Discharge-produced plasma (DPP)
4. Nanostructuring of material by ion and laser beams
5. High energy density physics applications
6. Laser-induced breakdown spectroscopy (LIBS)
7. Plasma for biomedical applications
8. Extreme ultraviolet (EUV) lithography
9. Computational physics for nuclear fusion, lithography, and other applications

Research of undergraduate students at CMUXE during previous SURF programs has resulted in students acquiring new knowledge in different areas and led to several joint publications, participation in national and international conferences, seminars, and provided experience in collaborative international research.

Several undergraduate and graduate students working in CMUXE have won national and international awards and have presented their work in several countries including Australia, China, Germany, Ireland, Japan, and Russia.

Position is open to undergraduates in all engineering and science disciplines. High level commitment and participation in group meetings are compulsory. Interested candidates are encouraged to visit the center website below for further information.


Heterogeneous Deformation and Strain Localization as a Precursor to Failure in Aerospace Materials

Research categories:  Aerospace Engineering, Computational/Mathematical, Material Science and Engineering
School/Dept.: AAE
Professor: Michael Sangid
Preferred major(s): AAE, MSE, ME, CS
Number of positions: 1

The research we do is building relationships between the material's microstructure and the subsequent performance of the material, in terms of fatigue, fracture, creep, delamination, corrosion, plasticity, etc. The majority of our group’s work has been on advanced alloys and composites. Both material systems have direct applications in Aerospace Engineering, as we work closely with these industries.

We are looking for a motivated, hard-working student interested in research within the field of experimental mechanics of materials. The in situ experiments include advanced materials testing, using state-of-the-art 3d strain mapping. We deposit self-assembled sub-micron particles on the material’s surface and track their displacement as we deform the specimen. Coupled with characterization of the materials microstructure, we can obtain strain localization as a precursor to failure. Specific projects look at increasing the structural integrity of additive manufactured materials and increasing fidelity of lifing analysis to introduce new light weight materials into applications.


Irradiation Effects on Material Structure, Properties, and Functionality

Research categories:  Material Science and Engineering, Nanotechnology, Other
School/Dept.: Nuclear Engineering
Professor: Janelle Wharry
Preferred major(s): Nuclear Engineering, Materials Science & Engineering
Desired experience:   Introductory course in Materials Science & Engineering (e.g. Callister book level).
Number of positions: 1-2

Our research group studies how irradiation alters the structure, properties, and functionality (i.e. performance) of a wide variety of materials, especially those metals and alloys used in nuclear energy systems. This project will specifically focus on nanoscale clusters of solute atoms, which are embedded in metallic alloys. Irradiation introduces significant instabilities to these nanoclusters, and the students will be tasked with understanding these instabilities. Work will involve both hands-on experiments on a variety of state-of-the-art materials characterization tools and microscopes, as well as data processing, analysis, and computational model-building.


Life Cycle Analysis of Consumer Goods

Research categories:  Material Science and Engineering, Mechanical Systems
School/Dept.: Mechanical Engineering
Professor: Thomas Siegmund
Preferred major(s): Mechanical Engineering
Desired experience:   A basic materials engineering course, a basic design course
Number of positions: 1

Materials are central to nearly all engineered systems humans use. Our selection of engineered solutions is dependent on and influenced by material availability and material selection.

Using examples of plastic vs. paper grocery bags, bottled vs. tap water, single serve coffee vs. drip coffee we will investigate material use choices, subsequent energy and CO2 balance. Based on these outcomes we will build new and improved design solutions.

More information:


Mechanics of Cutting

Research categories:  Material Science and Engineering, Mechanical Systems
School/Dept.: Mechanical Engineering
Professor: Thomas Siegmund
Preferred major(s): Mechanical Engineering, Materials Engineering
Number of positions: 1

Cutting materials is an fundamental human activity. In this project we aim to develop, build and test an instrumented cutting experiments. We aim to measure the cutting forces and cutting blade wear. There is an industry relevant application as well.

More information:


Network for Computational Nanotechnology (NCN) / nanoHUB

Research categories:  Computational/Mathematical, Computer Engineering and Computer Science, Electronics, Material Science and Engineering, Nanotechnology, Other
Professor: NCN Faculty
Preferred major(s): Electrical, Computer, Materials, or Mechanical Engineering; Chemistry; Physics; Computer Science
Desired experience:   Serious interest in and enjoyment of programming; programming skills in any language. Physics coursework.
Number of positions: 16-20

NCN is looking for a diverse group of enthusiastic and qualified students with a strong background in engineering, chemistry or physics who can also code in at least one language (such as C or MATLAB) to work on research projects that involve computational simulations. Selected students will typically work with a graduate student mentor and faculty advisor to create or improve a simulation tool that will be deployed on nanoHUB. To learn about this year’s research projects along with their preferred majors and requirements, please go to website noted below.

If you are interested in working on a nanoHUB project in SURF, you will need to follow the instructions below and be sure you talk about specific NCN projects directly on your SURF application, in the text box for projects that most interest you.

1) Carefully read the NCN project descriptions (website available below) and select which project(s) you are most interested in and qualified for. It pays to do a little homework to prepare your application.
2) Select the Network for Computational Nanotechnology (NCN) / nanoHUB as one of your top choices.
3) In the text box that asks about your “understanding of your role in a project that you have identified”, you may discuss up to three NCN projects that most interest you. For each NCN project, be sure to tell us why you are interested in the project and how you meet the required skill and coursework requirements.

Faculty advisors for summer 2017 include: Arezoo Ardekani, Peter Bermel, Ilias Bilionis, Marcial Gonzalez, Marisol Koslowski, Peilin Liao, Guang Lin, Lyudmila Slipchenko, Alejandro Strachan, Janelle Wharry, and Pablo Zavattieri. These faculty represent a wide range of departments: ECE, ME, Civil E, MSE, Nuclear E, Chemistry and Math, and projects may be multidisciplinary.

Examples of previous student work can be found here:


Purdue AirSense: Creating a State-of-the-Art Air Pollution Monitoring Network for Purdue

Research categories:  Agricultural, Aerospace Engineering, Bioscience/Biomedical, Chemical, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Educational Research/Social Science, Electronics, Environmental Science, Industrial Engineering, Innovative Technology/Design, Life Science, Material Science and Engineering, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: Civil Engineering
Professor: Brandon Boor
Preferred major(s): Any engineering, science or human health major.
Desired experience:   Motivation to learn about, and solve, environmental, climate, and human health issues facing our planet. Past experience: working in the lab, analytical chemistry, programming (Matlab, Python, Java, LabVIEW, HTML), electronics/circuits, sensors.
Number of positions: 1-2

Air pollution is the largest environmental health risk in the world and responsible for 7 million deaths each year. Poor air quality is a serious issue in rapidly growing megacities and inside the homes of nearly 3 billion people that rely on solid fuels for cooking and heating. Join our team and help create a new, multidisciplinary air quality monitoring network for Purdue - Purdue AirSense. You will have the opportunity to work with state-of-the-art air quality instrumentation and emerging sensor technologies to monitor O3, CO, NOx, and tiny airborne particulate matter across the campus. We are creating a central site to track these pollutants in real-time on the roof-top of Hampton Hall, as well as a website to stream the data to the entire Purdue community for free. 4-5 students will be recruited to work as a team on this project, which is led by Profs. Brandon Boor (CE) & Greg Michalski (EAPS).


Thermodynamics of Coherent Structures near Phase Transitions

Research categories:  Computational/Mathematical, Material Science and Engineering, Physical Science
School/Dept.: Mechanical Engineering
Professor: Ivan Christov
Preferred major(s): Engineering, Physics or Mathematics (any subareas of each)
Desired experience:   Knowledge of programming in MATLAB and/or a MATLAB-like high-level language (such as python). Experience writing own computer code and analyzing the numerical output. Basic understanding of partial differential equations. Basic understanding of thermodynamics and classical physics.
Number of positions: 1

Many phenomena in physics, engineering and material science can be addressed by "simple" mathematical models capturing only the essential behavior. Coherent structures are common to all areas of science, from synchronized oscillations of fireflies to Jupiter's red spot. "Simple" (also called phenomenological) models of phase transitions (abrupt changes in system behavior) also exhibit coherent structures and self-organized behavior. When large numbers of coherent structures interact in the presence of noise and/or external driving forces, a thermodynamic limit can be taken, describing the complex system by a single nonlinear partial differential equation for the "field" of coherent structures.

This project is aimed at numerically confirming analytical results obtained recently about such systems. The SURF student will work with the faculty member to further develop simple numerical simulations of partial differential equations using standard software such a MATLAB or Python tools such as numpy and scipy. The SURF student will generate simulations spanning a large parameter space and of sufficient size and accuracy to compute long-time (thermodynamic) averages suitable for comparison to the theory. If successful, the theory-numerics comparison will yield an important journal publication.

More information: