Skip navigation

Research Projects

Projects are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2017 Research Symposium Abstracts.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list, or view only projects in the following categories:

Material Science and Engineering


A light-weight silicon pixel detector for the CMS detector at the Large Hadron Collider

Research categories:  Electronics, Material Science and Engineering, Physical Science
School/Dept.: Physics & Astronomy
Professor: Andreas Jung
Preferred major(s): Physics (minor or experience in Electrical and/or Mechanical Engineering)
Desired experience:   Experience with labview is of advantage as well as a general understanding of at least one programming language. Existing experience with analysis of data and interpretation, e.g. linear regression / trend analysis.
Number of positions: 1

The Large Hadron Collider will be upgraded to provided a unprecedented number of hadronic interactions, which will be used to search for any deviation from the standard model theory of particle physics. In order to withstand the large number of hadronic interaction also the CMS detector needs to be upgraded. The proposed summer research project contributes to the upgrade of the forward pixel detector in the very heart of the CMS detector.

Candidates join my lab/group working on data taking and testing of silicon detector prototypes and their support prototypes in our local two-phase CO2 cold box setup. The project includes data taking, preparation & hands-on assembly of prototypes, as well as data analysis. There is also possibilities to carry out the thermal finite element analysis needed to simulate the thermal behavior of our prototypes. Experience with labview is of advantage as well as a general understanding of at least one programming language. Most important is being enthusiastic for the research project.


Characterization of strain localization and associated failure of structural materials

Research categories:  Aerospace Engineering, Computational/Mathematical, Computer Engineering and Computer Science, Material Science and Engineering, Mechanical Systems
School/Dept.: School of Aeronautics and Astronautics
Professor: Michael Sangid
Preferred major(s): AAE, MSE, ME, CS
Number of positions: 1

The research we do is building relationships between the material's microstructure and the subsequent performance of the material, in terms of fatigue, fracture, creep, delamination, corrosion, plasticity, etc. The majority of our group’s work has been on advanced alloys and composites. Both material systems have direct applications in Aerospace Engineering, as we work closely with these industries. We are looking for a motivated, hard-working student interested in research within the field of experimental mechanics of materials. The in situ experiments include advanced materials testing, using state-of-the-art 3d strain mapping. We deposit self-assembled sub-micron particles on the material’s surface and track their displacement as we deform the specimen. Coupled with characterization of the materials microstructure, we can obtain strain localization as a precursor to failure. Specific projects look at increasing the structural integrity of additive manufactured materials and increasing fidelity of lifing analysis to introduce new light weight materials into applications.


Network for Computational Nanotechnology (NCN) / nanoHUB

Research categories:  Chemical, Computational/Mathematical, Computer Engineering and Computer Science, Electronics, Material Science and Engineering, Mechanical Systems, Nanotechnology, Other
Professor: NCN Faculty
Preferred major(s): Electrical, Computer, Materials, Chemical or Mechanical Engineering; Chemistry; Physics; Computer Science; Math
Desired experience:   Serious interest in and enjoyment of programming; programming skills in any language. Physics coursework.
Number of positions: 16-20

NCN is looking for a diverse group of enthusiastic and qualified students with a strong background in engineering, chemistry or physics who can also code in at least one language (such as Python, C or MATLAB) to work on research projects that involve computational simulations. Selected students will typically work with a graduate student mentor and faculty advisor to create or improve a simulation tool that will be deployed on nanoHUB. Faculty advisors come from a wide range of departments: ECE, ME, Civil E, ChemE, MSE, Nuclear E, Chemistry and Math, and projects may be multidisciplinary. To learn about this year’s research projects along with their preferred majors and requirements, please go to the website noted below.

If you are interested in working on a nanoHUB project in SURF, you will need to follow the instructions below. Be sure you talk about specific NCN projects directly on your SURF application, using the text box for projects that most interest you.

1) Carefully read the NCN project descriptions (website available below) and select which project(s) you are most interested in and qualified for. It pays to do a little homework to prepare your application.

2) Select the Network for Computational Nanotechnology (NCN) / nanoHUB as one of your top choices.

3) In the text box that asks about your “understanding of your role in a project that you have identified”, you may discuss up to three NCN projects that most interest you. For each NCN project, be sure to tell us why you are interested in the project and how you meet the required skill and coursework requirements.

For more information and examples of previous research projects and student work, click on the link below.