Research Projects

Projects are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2018 Research Symposium Abstracts.

2019 projects will continue to be posted through January!

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:

Material Science and Engineering

 

Additive Manufacturing (3D Printing) of Solid Propellants

Research categories:  Aerospace Engineering, Chemical, Material Science and Engineering, Mechanical Engineering
School/Dept.: ME
Professor: Steven Son
Preferred major(s): ME, AAE, ChE or MSE
Desired experience:   Junior or senior level students are preferred. Aptitude and interest in graduate school also desirable. Good laboratory or hands on work experience desirable.

Significant advancements have been made in the fabrication of energetic materials with additive manufacturing (AM) processes. The geometric flexibility of AM has been touted, but little has been done to combine complex geometries with spatially-varying thermodynamically optimized materials in solid propellants. Investigation of the intersection of these areas is needed to fulfill the potential of tailorability of AM processes for propellant optimization. The propellant grains result in complex geometries. Recent development of an ultrasonic-vibration assisted direct write printing system at Purdue has opened a range of new materials for printing. Steps are being taken to combine AM techniques in a single, multi-nozzle printer to allow continuous fabrication of a propellant with two or more major components. This project will focus on printing thermodynamically optimized solid propellants in with a range of internal geometries and investigating their effects with classical and more recent diagnostic techniques.

 

Adhesives at the Beach

Research categories:  Bioscience/Biomedical, Chemical, Environmental Science, Life Science, Material Science and Engineering, Physical Science
School/Dept.: Department of Chemistry
Professor: Jonathan Wilker
Preferred major(s): Biology, Biomedical Engineering, Chemical Engineering, Chemistry, Materials Engineering
Desired experience:   This project will involve aspects of marine biology (e.g., working with live mussels), materials engineering (e.g., measuring mechanical properties of adhesives), and chemistry (e.g., making surfaces with varied functionalities). Few people at any level will come in with knowledge about all aspects here. Consequently we are looking for adventurous students who are wanting to roll up their sleeves, get wet (literally), and learn several new things.

The oceans are home to a diverse collection of animals producing intriguing materials. Mussels, barnacles, oysters, starfish, and kelp are examples of the organisms generating adhesive matrices for affixing themselves to the sea floor. Our laboratory is characterizing these biological materials, designing synthetic polymer mimics, and developing applications. Characterization efforts include experiments with live animals, extracted proteins, and peptide models. Synthetic mimics of these bioadhesives begin with the chemistry learned from characterization studies and incorporate the findings into bulk polymers. For example, we are mimicking the cross-linking of DOPA-containing adhesive proteins by placing monomers with pendant catechols into various polymer backbones. Adhesion strengths of these new polymers can rival that of the cyanoacrylate “super glues.” Underwater bonding is also appreciable. In order to design higher performing synthetic materials we must, first, learn all of the tricks used by nature when making adhesives. Future efforts for this coming summer will revolve around work with live mussels. Plans for experiments include changing the water, surfaces, and other environmental conditions around the animals. Mechanical performance of the resulting adhesives will be quantified and compared. Microscopy and other methods will be used to further understand the factors that dictate how these fascinating biological materials can function under such demanding conditions.

 

After the Fire: Rapid Decontamination of Plastic Potable Water Infrastructure Materials

Research categories:  Chemical, Civil and Construction, Environmental Science, Material Science and Engineering
School/Dept.: Materials Engineering
Professor: Kendra Erk
Desired experience:   Clear enthusiasm for chemistry and materials; evidence of strong internal motivation and initiative.

The 2018 Camp Fire is the most destructive and deadliest wildfire in California’s history, and more than 27,000 Californians faced tremendous hardship and loss. Many people are asking when they will be able to have safe drinking water again, when can they rebuild, and how to determine if their homes are safe. These critical questions require scrutiny because of the extensive damage to the drinking water distribution systems and even building plumbing. Volatile organic chemicals (VOC) have been found at 100s-1000s of ppb levels exceeding safe drinking water limits. The SURF student will: (1) conduct experiments that simulate plastic potable water infrastructure chemical contamination and (2) determine the effectiveness of water rinsing and warm air flushing at removing organic contaminants that have diffused into the plastics. The student will work with faculty and a Lillian Gilbreth postdoctoral research associate who were called into the disaster zone for their expertise at responding to and recovering from the large-scale drinking water distribution contamination incident.

 

Characterization of Decomposition and Detonation of Cocrystal Explosives

Research categories:  Aerospace Engineering, Chemical, Material Science and Engineering, Mechanical Engineering
School/Dept.: ME
Professor: Steven Son
Preferred major(s): ME, AAE, ChE or MSE
Desired experience:   Junior or Senior UG students preferred. Good lab skills are highly desired.

Cocrystal explosives offer the possibility improved safety and performance over conventional materials. The SURF student would assist graduate students in the study of novel cocrystal explosives. Both slow heating and detonation experiments and detonation experiments will be designed and performed.

 

Computational Modeling of Photon Transport in Nanocomposites

Research categories:  Computational/Mathematical, Material Science and Engineering, Mechanical Engineering, Nanotechnology
School/Dept.: Mechanical Engineering
Professor: Xiulin Ruan
Preferred major(s): Mechanical Engineering, Materials Sciences, Physics, Electrical Engineering, Computational Engineering
Desired experience:   The student should have an intermediate level of scientific computing experience (i.e. MATLAB or Python knowledge), strong analytical and numerical skills, and an interest in parallel computing. Completed coursework in Physics (Electricity & Magnetism) and Heat Transfer will be helpful, but not required.

This project will aid in an ongoing effort to achieve ultra-efficient nanocomposites for radiative cooling applications. Achieving radiative cooling requires engineering optical properties of nanocomposites to reflect and emit in certain regions. This work will focus on how to optimize the nanocomposites through computational modeling to achieve the optimal optical properties.

 

Cure-in-Place-Shelters for Disaster Preparedness

Research categories:  Chemical, Civil and Construction, Environmental Science, Material Science and Engineering, Mechanical Engineering
School/Dept.: Materials Engineering
Professor: Kendra Erk
Preferred major(s): Science or engineering students are welcome, including but not limited to chemistry, physics, geology, and the following engineering disciplines: chemical, civil, environmental, materials, mechanical.
Desired experience:   Enthusiasm for chemistry and an interest in materials research. Prior experiences with composites would be a benefit to the project but are not required.

Quick-cure polymer-based composites can be used for creating temporary shelters and other structures immediately after a disaster (i.e. earthquake, hurricane, etc.) Currently, it can take days to months to provide traditional types of temporary housing. The few temporary shelter options on the market are designed around concepts such as DRASH tents, modular construction, and trailers. Our research team has recently conducted studies on cured-in-place composites for infrastructure repair. This model polymer composite system could be developed into rapidly-deployable shelters that require few tools, could be towed, air-dropped, or stored, would be lightweight but strong and rigid. The SURF student will (1) investigate whether uncured composite can withstand the pressures necessary for inflation into shape, (2) assist in developing non-toxic UV-curable resin formulations and (3) characterize and understand how the mechanical, thermal, shelf-life and other material properties are influenced by the chemical formulation to determine structure/property/performance maps. Through this project, students will develop knowledge and important skills in material design and mechanical testing of composites.

 

Development of New Approaches for Biological Imaging and Materials Design using Mass Spectrometry

Research categories:  Chemical, Innovative Technology/Design, Material Science and Engineering
School/Dept.: Chemistry
Professor: Julia Laskin
Preferred major(s): Chemistry, biochemistry, chemical engineering, computer science, electrical engineering, materials engineering
Desired experience:   We are looking a different skill set for different aspects of the project. If you are excited about science and dedicated to research, you will find an excellent environment in our lab.

We have two projects in the lab. In one project, we develop new analytical approaches for imaging of numerous biomolecules in biological systems. We need help in running experiments, analyzing data, and development of new computational approaches, which will streamline data analysis and facilitate biological discoveries. In another project, we develop unique instruments for designing layered coatings using beams of complex ions. In this project, we need help with the synthesis of relevant precursor molecules, their characterization using mass spectrometry and other analytical techniques, ion deposition on surfaces, and surface characterization.

 

Elastically-driven flow focusing in micro-channels

Research categories:  Chemical, Life Science, Material Science and Engineering, Mechanical Engineering
School/Dept.: Chemical Engineering
Professor: Vivek Narsimhan
Preferred major(s): Chemical Engineering, Biological Engineering, Physics, Chemistry, Applied Mathematics
Desired experience:   Basic understanding of MATLAB

Separation of biological suspensions (e.g., cells, bacteria, macro-particles in solution) find wide use in the detection, diagnosis, and treatment of disease. Traditional techniques such as centrifugation and filtration (size-exclusion) are common, but for many point-of-care applications, it is desired to use strategies that are more gentle, cheap, portable, and low-volume. Here, microfluidics has emerged as an attractive method to address these concerns. Using channels with minimal power sources or moving parts (i.e., only syringes), several laboratory studies have demonstrated that one can purify and isolate cancer cells, leukocytes, or bacteria samples from diluted whole blood without the use of specific biomarkers. The scientific premise behind these studies is that various components in blood have different shapes, sizes, and deformability, and this variability in physical properties allows one to isolate/purify these components using flow forces.

In this project, we propose to improve focusing-based microfluidic techniques through the addition of long-chain, charge-neutral polymers (e.g., PEO or PVP) to the biological suspension. If added in dilute amounts (~1% wt. or below), these bio-compatible polymers impart additional flow forces to the particles in the fluid. These forces depend sensitively depend on the particle’s size, shape, and deformability, and hence can be used to fractionate particles by shape and size. The student will do the following: (a) fabricate non-spherical microparticles, and (b) visualize these particles flowing in a microfluidic device through microscopy or holography. The student will learn basic synthesis and image processing for this project.

 

High Performance Concrete from Recycled Hydrogel-Based Superabsorbent Materials

Research categories:  Chemical, Civil and Construction, Environmental Science, Material Science and Engineering
School/Dept.: School of Materials Engineering
Professor: Kendra Erk
Desired experience:   Enthusiasm for chemistry and an interest in materials research. Prior experiences with cement and concrete would be a benefit to the project but are not required.

Concrete that is internally cured by water-swollen superabsorbent polymer (SAP) particles has improved strength and durability. Widespread adoption of SAP-cured concrete is hindered by the lack of commercial SAP formulations that maintain their absorbency in cement’s high-pH environment. Most commercial SAP formulations are designed for disposable diapers and other absorbent hygiene products (AHPs), which account for ~12% (3.4M tons) of all non-durable goods in landfills. Over 70% of a diaper’s weight is composed of absorbent materials – mainly cellulose and polyacrylamide(PAM)-based SAP particles – the latter being chemically equivalent to the SAP particles that perform well in concrete research. Thus, a sustainable strategy to create effective concrete curing agents is to recycle the absorbent materials from AHPs and reprocess for use in concrete. AHP recycling efforts are already underway, including a plant in Italy with a 10,000-tonne annual capacity for AHP recycling. However, synthetic strategies must be developed to convert recycled AHPs into absorbent particles that perform well in concrete. Hypothesis and Objectives: We hypothesize that the PAM and cellulose components of AHPs can be separated and chemically crosslinked to form particles that display high absorption capacity in alkaline environments. The SURF student will: (1) obtain recycled absorbent materials and characterize the structures of the materials including composition, particle morphology, and swelling behavior; (2) design and synthesize absorbent particles by combining different ratios of recycled absorbent materials with a crosslinking agent and grinding/sieving to create particles with dry sizes of 10-100 micron; (3) identify the dosages of absorbent particles required to create internally cured concrete with good workability and mechanical strength; and (4) perform cost-benefit analysis of concrete cured by recycled particles and commercial SAP.

 

High-Volume Treatment of Metal-Polluted Water

Research categories:  Agricultural, Chemical, Civil and Construction, Environmental Science, Material Science and Engineering, Mechanical Engineering
School/Dept.: Materials Engineering
Professor: Kendra Erk
Preferred major(s): Science or engineering students are welcome, including but not limited to chemistry, physics, geology, and the following engineering disciplines: chemical, civil, environmental, materials, mechanical.
Desired experience:   Enthusiasm for chemistry and an interest in materials research. Prior experiences with composites would be a benefit to the project but are not required.

Mining of coal and metallurgical ores has significantly impacted the land and groundwater quality in many semi-arid regions and there are great challenges to mitigate the impact of this legacy pollution. The impacted areas have a portion of their scarce water resources chemically contaminated and are lacking a cost-effective and comprehensive strategy to rehabilitate the fouled groundwater. Laboratory testing of polluted water will be passively treated with geotextile-like materials that have been surface modified with polymers and clay minerals designed to selectively sequester trace chemical pollutants. The novel engineered material will be designed to have high surface area in a structure that will minimally impact water transport. As the water passes over the material, the pollutant will be irreversibly bound to the surface. The SURF student will investigate chemical surface modification of polymer mesh materials to induce chemical binding of the select pollutants. Testing will include measuring the reduction in pollutants as a function of exposure time and determining the total binding capacity of the modified material mesh exposed to a mixture of pollutants and other species typically present in groundwater (i.e. organic/inorganic particulates).

 

Illumination of Damage through Microtomography

Research categories:  Aerospace Engineering, Computer Engineering and Computer Science, Industrial Engineering, Material Science and Engineering, Mechanical Engineering
School/Dept.: Aeronautics and Astronautics
Professor: Michael Sangid
Preferred major(s): AAE, ME, MSE, EE, CSE, or IE
Desired experience:   Students are expected to work with Image Processing and Visualization tools, as well as Matlab.

Damage in structural materials is often difficult to quantify, instead we rely on large scale component level testing and curve fitting. With the advent of advanced microtomography, we have the ability to identify damage inside the bulk of the material, in which the samples are subjected to mechanical loading. Thus, in this project, microtomography scans will be reconstructed and the damage in the form of voids or cracks will be characterized and quantified in several material systems (including carbon fiber reinforced composites and Ti-6Al-4V produced via additive manufacturing). The interaction of damage with microstructural features will be assessed, in order to achieve a physics-based understanding of material failure.

 

Low-cost user-friendly biosensors for animal health

Research categories:  Agricultural, Bioscience/Biomedical, Electronics, Innovative Technology/Design, Life Science, Material Science and Engineering, Mechanical Systems
School/Dept.: Agricultural and Biological Engineering
Professor: Mohit Verma
Preferred major(s): Biomedical engineering, biological engineering, electrical engineering, mechanical engineering, or other relevant fields
Desired experience:   To be successful at this position, you should have a GPA>3.5, prior experience working in a wet lab (ideally experience with bacterial culture and DNA amplification), experience building electromechanical devices, and the ability to work in a team.

Infectious diseases are a leading cause of economic burden on food production from animals. For example, bovine respiratory diseases lead to a loss of ~$480/animal. Current methods for tackling these diseases includes the administration of antibiotics by trial-and-error. This approach leads to failure of treatment in up to one-third of the cases. In addition, it also leads to a proliferation of antibiotic resistance in pathogens.

Our research project focuses on developing a low-cost user-friendly biosensor based on paper that can detect which pathogen is causing the disease and whether it exhibits antibiotic resistance. Such a biosensor would provide a readout to the farmer or the veterinary physician and suggest which antibiotics are likely to be successful.

The SURF student will have three objectives: i) design primers for detecting pathogens associated with bovine respiratory diseases, ii) build a device for processing the sample and extracting DNA that can be amplified by the biosensor, and iii) build a device for detecting colorimetric/fluorometric output from the biosensor.

More information: www.vermalab.com

 

Particle Detachment from Polymeric Substrates upon Mechanical Deformation

Research categories:  Material Science and Engineering, Mechanical Engineering
School/Dept.: Materials Engineering
Professor: Chelsea Davis
Preferred major(s): Materials Science and Engineering, Mechanical Engineering, Chemical Engineering, Physics, Polymer Science

The attachment of small particles to a soft adhesive layer is critical in the handling of energetic materials and active pharmaceutical ingredients that are often produced in powder form. An understanding of the debonding mechanisms of rigid spherical and prismatic particles from a polymer substrate due to mechanical deformation will enable the development of precisely-controlled particle adhesion and release systems. This project will investigate the debonding process of rigid microparticles from thermoplastic and elastomeric substrates subjected to various modes of mechanical deformation (specifically uniaxial tension and flexion). Our experimental approach will involve sample preparation, micromechanical testing, and imaging via optical and electron microscopy conducted by the student.

 

Reducing Ocean Pollution By Understanding the Formation and Stability of Shipboard Emulsions

Research categories:  Agricultural, Chemical, Environmental Science, Material Science and Engineering
School/Dept.: Materials Engineering
Professor: Kendra Erk
Preferred major(s): MSE, ChemE, EEE, and related fields of science and engineering
Desired experience:   Enthusiasm for chemistry, and interest in materials, environmental, or chemical engineering. Prior experience with emulsions would benefit the project but are not required.

Bilge water is a collection of waste fluids onboard a ship and is a major source of pollution in marine environments. All waste fluids onboard (including oil, grease, fuel, detergents, etc.) are collected in the ship’s bilge until it can be treated and released into the ocean. Treatment techniques remove some of the pollutants but have a difficult time removing oil when it is in the form of an oil-in-water “shipboard emulsion” with nanoscale droplets. Consequently, oils and detergents are released into the environment. The goal of this project is to study the formation and composition of bilge water emulsions to ultimately prevent emulsion formation and improve treatment techniques. In this project, the SURF student will create and characterize model bilge water emulsions with emphasis on understanding the formation mechanisms and stability of these emulsions. The SURF student will have the opportunity to learn many different characterization techniques specific to nanoscale oil-water emulsions, including optical microscopy, dynamic light scattering, zeta potential measurements, interfacial tension measurements and more, by working closely with a current Ph.D. student in MSE and faculty in MSE and EEE (Profs. Erk, Howarter, and Martinez).

 

ThermoConc as a Building Envelope for Electricity Generation and Space Heating and Cooling

Research categories:  Material Science and Engineering, Mechanical Systems, Physical Science
School/Dept.: Civil Engineering
Professor: Ming Qu
Preferred major(s): Material engineering or mechanical engineering
Desired experience:   1. Good skills with experiments and data acquisition; 2. Good writing and presentation skills; 3. Solid background in thermoelectric theory.

NSF research project aims to create a new strategy to reduce building energy consumption while enhancing thermal comfort by using thermoelectric concrete envelope to heat or cool indoor space without the need of additional power source. The student will help to characterize the new TE Concrete and evaluate the performance of ThermoConc both theoretically and practically.

 

Using Polymer Science to Make a Better Dirt Road

Research categories:  Agricultural, Chemical, Civil and Construction, Environmental Science, Material Science and Engineering
School/Dept.: School of Materials Engineering
Professor: Kendra Erk
Desired experience:   Enthusiasm for chemistry and an interest in materials research. Prior experiences with soils would be a benefit to the project but are not required.

The majority of roadways in rural communities and developing countries are unpaved “dirt” roads, which typically become impassable and unsafe during inclement weather. Soil stabilization techniques can be used to increase the strength and durability of dirt roads, including mixing clays, resins, and polymer emulsions with soils to form a high-toughness composite. However, these techniques are only effective over weeks and months – not years – and composite performance is reduced by extreme weather events including droughts and floods. Thus, to increase the safety and well-being of individuals living in isolated communities both in the US and around the world, there is a critical need to design durable, low-cost dirt roads that are resilient to traffic and weather. During the course of this summer project, the SURF student will: (1) learn about the limitations of polymer-based stabilization methods for natural roadways in arid and semi-arid climates; (2) determine how the physical and chemical interactions of polymers in the presence of water, salts, and soils impact the mechanical properties and toughness of polymer-soil composites; and (3) develop material design strategies to create durable and self-healing polymer-based materials and coatings that can be applied to polymer-soil composites and, thus, to natural roadways. Through this project, students will develop knowledge and important skills in organic chemistry and synthesis as well as material design and mechanical testing of composites.