Research Projects

Projects for 2017 will be posted soon. To learn more about the type of research conducted by undergraduates, view the 2016 Research Symposium Abstracts.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list, or view only projects in the following categories:

Computer Engineering and Computer Science

 

VACCINE-Visual Analytics for Command, Control, and Interoperability Environments

Research categories:  Computational/Mathematical, Computer Engineering and Computer Science, Innovative Technology/Design
School/Dept.: ECE
Professor: David Ebert
Preferred major(s): Computer Engineering, Computer Science, other Engineering majors with programming experience
Desired experience:   Programming experience in C++, others as described below
Number of positions: 5

We are currently searching for students with strong programming and math backgrounds to work on a variety of projects at the Visual Analytics branch (VACCINE) of the Department of Homeland Security Center of Excellence in Command, Control and Interoperability. Students will each be assigned individual projects focusing on developing novel data analysis and exploration techniques using interactive techniques. Students should be well versed in C++ upon entering the SURF program, and will be expected to learn skills in R, OpenGL, and/or a variety of other libraries over the course of the summer.

Ongoing project plans will include research that combines soil, weather and crop data from sensing technology to provide critical crop answers for California wine growers and producers, programming for criminal incident report analysis, incorporating local statistics into volume rendering on the GPGPU, healthcare data analysis, and analyzing customizable topics and anomalies that occur in real-time via social media networks Twitter and Facebook. If you have CUDA programming experience or an intense interest to learn it, please indicate this on your application form. We also plan to have a project that will assist first responders in accident extrication procedures.

The ideal candidate will have good working knowledge of modern web development technologies, including client-side technologies such as HTML5, SVG, JavaScript, AJAX, and DOM, as well as server side components such as PHP, Tomcat, MySQL, etc. Experience in visualization or computer graphics is a plus. The project will likely be based on the D3 (http://d3js.org/) web-based visualization toolkit; prior experience using D3 or other visualization APIs for the web is particularly welcome.

Of the past undergraduate students that have worked in the center, five of their research projects have led to joint publications in our laboratory and at many of our areas' top venues. Sample projects include visual analytics for law enforcement data, health care data and sports data. Students will be assigned individual projects based on the center's needs which will be determined at a later date. To learn more about the VACCINE Center go to the website provided below.

More information: http://visualanalytics-cci.org

 

Wideband GNSS Reflectometry Instrument Design and Signal Processing for Airborne Remote Sensing of Ocean Winds.

Research categories:  Aerospace Engineering, Computer Engineering and Computer Science, Electronics, Environmental Science, Physical Science, Other
School/Dept.: AAE
Professor: James Garrison
Preferred major(s): Electrical Engineering, Physics
Desired experience:   Linear Systems, Signal processing, computer programming (C, Python, MATLAB). Some experience building computers or electronics is desirable. A basic understanding of electromagnetism is also desirable.
Number of positions: 1

This research project will involve the assembly and test a remote sensing instrument to make measurements of the ocean wind field from the NOAA “Hurricane Hunter” aircraft. The fundamental operating principle of this new instrument is “reflectometry”, which is based upon observing changes in the structure of a radio frequency signal reflected from the ocean surface. These changes are related to the air-sea interaction process on the ocean surface and can be used to estimate the wind speed through empirical models. Transmissions from the Global Navigation Satellite System (GNSS), (e.g. GPS, Galileo, Glonass or Compass) are ideal signal sources for reflectometry, due to their use of a “pseudorandom noise” (RRN) code.

NASA will be launching the CYGNSS satellite constellation in November to globally monitor the tropical ocean and observe the formation of severe storms. CYGNSS will use a first generation GNSS-R instrument. This summer research project will produce a next-generation prototype taking advantage of the wider bandwidth of the Galileo E5 signal (~90 MHz vs. 2 MHz) for higher resolution measurements of the reflected signal.

In addition to hardware assembly and testing in the laboratory, this research project will also require the development of signal processing algorithms to extract essential information from the scattered signal. A “software defined radio” approach will be used, in which the full spectrum of the reflected signal is recorded and post-processed using software to implement the complete signal processing chain.

The goal of this summer research project is to deliver a working instrument, post processing software, and documentation to NOAA for flight on the hurricane aircraft during the 2017 hurricane season. There are two objectives of this experiment. The first is to demonstrate the feasibility of wideband E5 reflectometry measurements. The second objective is to collect the highest quality GNSS reflectometry data, under a wide variety of extreme meteorological conditions, to improve the empirical models that will be used for processing CYGNSS data and generating hurricane forecasts.

Students interested in this project should have good programming skills and some experience with C, Python and MATLAB. They should also have a strong background in basic signal processing. Experience with building computers or other electronic equipment will also be an advantage.

More information: www.linkedin.com/in/gvector

 

nanoHUB Research in Nanoscale Science and Engineering

Research categories:  Computational/Mathematical, Computer Engineering and Computer Science, Electronics, Material Science and Engineering, Nanotechnology, Other
Professor: NCN Faculty
Preferred major(s): Electrical, Computer, Materials, or Mechanical Engineering; Physics; Computer Science
Desired experience:   Serious interest in and enjoyment of programming; programming skills in any language. Physics coursework.
Number of positions:

Advances in nanoscale science and engineering promise to provide solutions to some of the Engineering Grand Challenges of the 21st century. The Network for Computational Nanotechnology (NCN) has several undergraduate research positions available in exciting interdisciplinary research projects that use computational simulations to solve engineering problems in areas such as nanoelectronics, predictive materials simulations, materials characterization, nanophotonics, and the mechanical behavior of materials. The projects cover a wide range of applications, including development of systems with increased efficiencies for energy storage or energy conversion, development of next-generation electronic devices, improved manufacturing processes for pharmaceuticals and other materials, and the prediction and design of new materials with specific properties. Descriptions of the available research projects, requirements, and faculty advisors are posted on the website provided under 'More Information' below.

We are looking for students with a strong background in engineering or physics who can also code in at least one language, such as C or MATLAB. Selected students will work with a graduate student mentor and faculty advisor to create or improve a simulation tool that will be deployed on https://nanoHUB.org.

nanoHUB is arguably the world’s largest nanoscale science and engineering user facility, with over 300,000 annual users. nanoHUB’s simulation tools run in a scientific computing cloud via a web browser, and are used by researchers and educators world wide. As part of our team, you will be engaged in a National Science Foundation-funded effort that is connecting theory, experiment and computation in a way that makes a difference for the future of nanotechnology and the future of scientific communities. At the end of the summer, successful students will publish a simulation tool on nanoHUB, where it can impact thousands of nanoHUB users.

In addition to the regular SURF workshops and seminars, NCN provides some additional activities and training for our cohort of summer students. More information, including examples of previous student projects, is available on the NCN SURF page: https://nanohub.org/groups/ncnsurf.

In your SURF application, be sure to list the specific NCN project that you are interested in, along with your qualifications for that project. Students are matched to NCN projects based on their interests, qualifications, and available openings on projects.