Research Projects

This is a list of research projects that may have opportunities for undergraduate students. You can browse all the projects, or view only projects in the following categories:

Civil and Construction

 

Atomistic Simulations of Gold-Silicon Interface

Research categories:  Aerospace Engineering, Chemical, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Industrial Engineering, Material Science and Engineering, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: School of Aeronautics and Astronautics
Professor: Michael Sangid
Desired experience:   Junior standing and ability to develop computer codes.
Number of positions: 1

The size of electronic devices has been decreasing steadily over the years and it is expected to continue that trend, as there is significant interest in the development to microelectronics and nanoelectronics for applications in the biomedical, sensing, data storage and high-performance computing fields, among others. With the increasing miniaturization of electronics, it is important to consider any effects that might happen in the interfaces at the nanometer scale, as the behavior of materials at this length scales may differ markedly from the behavior at the macroscopic scale. This project studies the interactions occurring in the interface between gold and silicon, materials selected due to their excellent properties as conductor and semiconductor, respectively, and their popularity in electronic circuits. The behavior of gold and silicon is expected to differ from the properties observed in the bulk and at larger scales, so it is crucial to analyze and understand the mechanisms of this behavior for the design and manufacture of microelectronic devices utilizing these materials. The research will involve Molecular Dynamics modeling of the gold-silicon interface. Additionally, this project will be complemented by other research opportunities in our lab.

 

Characterizing fiber reinforced composite materials

Research categories:  Aerospace Engineering, Chemical, Civil and Construction, Industrial Engineering, Material Science and Engineering, Mechanical Systems
School/Dept.: School of Aeronautics and Astronautics
Professor: Michael Sangid
Preferred major(s): AAE, ME, or MSE
Desired experience:   Willingness to do hands-on work
Number of positions: 2

We are looking for a motivated, hard-working student interested in experimental composite materials research. This position is on a team investigating fiber orientation and length measurements in thermoplastic composites. These long fiber composites have a direct application to replace steel and aluminum structural alloys in the aerospace and automotive industries. Our team is comprised of Pacific Northwest National Lab, Autodesk, Plasticomp, Magna, Toyota, University of Illinois, and Purdue. Applicants will work under the mentorship of a graduate student and faculty member. The position includes hands on specimen preparation, in the form of extracting and polishing samples for fiber orientation measurements and melting samples and isolating the pertinent fibers for length measurements. Applicants should be undergraduate students interesting in composite materials.

 

Comparison of the Accuracy of Traffic Counting Devices

Research categories:  Civil and Construction
School/Dept.: Civil Engineering
Professor: John Haddock
Preferred major(s): Civil Engineering
Desired experience:   n/a
Number of positions: 1

This project will compare three types of traffic counting devices to determine their accuracy in recording vehicle volume, speed and classification. Under guidance, the SURF student will conduct all of the research, including field tests, data compilation, statistical analysis and reporting of the results. This research will be valuable to traffic engineers and local transportation agencies.

 

CyberMech: A Novel Run-Time Substrate for Cyber-Mechanical Systems

Research categories:  Aerospace Engineering, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Electronics, Mechanical Systems
School/Dept.: Civil Engineering
Professor: Arun Prakash
Preferred major(s): Structural Engineering, Civil, Mechanical, Aerospace, Computer Science, Electrical
Desired experience:   A strong background in the following areas is preferred: Mathematics, Computer Programming, Mechanics, Physics
Number of positions: 1

This project is also a joint collaborative project between myself, Prof. Shirley Dyke from Mech Eng., and faculty from Computer Science at Washington University (St. Louis). In this project, we are developing a computational platform that enables Real-Time Hybrid Simulations (RTHS) of complex structural systems. As opposed to a pure numerical simulation, a hybrid simulation is one where we have a physical specimen of a particular structural component (say a magneto-rheological damper - that is used to control vibrations of structures such as buildings, bridges, automobiles, air-planes, or space structures), that is combined with a numerical model of the entire structure (in real-time) to simulate how this component would behave / control the oscillations of the full structure. This is a handy approach, because it is difficult and expensive to do actual full-scale testing of the component on large scale structures. The challenges associated with this project are first to devise effective coupling mechanisms that allow 'simulating' the physical component (MR damper) as if it were connected in-place within a large structure, and then to develop a computational platform that enables fast, real-time, control and testing of the component combined in different ways with the numerical model of the entire structure.

 

Development of a Roundabout Manual for Local Agencies

Research categories:  Civil and Construction
School/Dept.: Civil Engineering
Professor: John Haddock
Preferred major(s): Civil Engineering, Technology or Other
Desired experience:   Must be interested in transportation, and have knowledge of Excel, Powerpoint and Word. Must have current US driver's license. Must be a good communicator (oral and written) and able to work effectively with people.
Number of positions: 1

The number of roundabouts across the country and in the state of Indiana has increased significantly in recent years. Roundabouts increase safety by reducing serious crashes, reduce delay and emissions, and eliminate the maintenance and electricity costs associated with traffic signals.

Roundabouts may introduce special considerations for the agencies that operate and maintain them. Roundabouts may require special equipment to maintain them, and special techniques to keep them operating smoothly in all seasons.

This research project will conduct a literature search, and interview local agencies in Indiana that have roundabouts to identify practical solutions and best practices for operation, and document this information in a brief, easy-to-read guide for local agency personnel. This guide may include information such as design considerations, appropriate equipment, practices for snow removal and street cleaning, and sign placement.

 

Distributed Hybrid Simulation for Dynamical Systems to Natural Hazards

Research categories:  Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Mechanical Systems
School/Dept.: Mechanical Engineering
Professor: Shirley Dyke
Preferred major(s): Mechanical, Civil Engineering; Computer Science or Engineering
Desired experience:   Matlab knowledge is very helpful. Experience with differential equations preferred.
Number of positions: 1

Real-time hybrid simulation (RTHS) is an emerging technique that allows for cost-effective testing of dynamical systems. HS combines physical experimentation with computational simulation to understand how structures and lifelines respond to earthquakes and other natural hazards. RTHS executes this class of test at the actual speed of the earthquake input by using embedded systems with real-time computing capabilities to communicate among experimental and computational resources. In this project we aim to advance the state of the art in RTHS through the use of distributed environments. Both the physical simulation (a building structure) and the computational (controllers and computational models) aspects of the testing require efforts to ensure that a test is conducted in a reliable and accurate manner. Students working on this project will be engaged in learning how to conduct physical experimentation and execute computational models to gain knowledge that will advance the state of RTHS.

 

Evaluating the Performance of Concrete During Placement

Research categories:  Civil and Construction, Material Science and Engineering
School/Dept.: Civil
Professor: Jason Weiss
Preferred major(s): Open
Desired experience:   Should be willing to go to field construction sites to help collect data.
Number of positions: 2

During the summer of 2014 Purdue will deploy a mobile testing laboratory that will monitor the construction of concrete projects throughout the state and midwestern region of the US. The goal of this project will be to use the new laboratory to document the concrete being placed, to place sensors in the concrete and to use data obtained from this testing to perform life-cycle predictions for the built infrastructure. Innovative new concretes and placement techniques will be compared with conventional systems to document how this may impact life-cycle costs. During this project the student will be expected to visit construction sites with the mobile lab team, to document construction with photos and videos, to perform physical testing and to use data in computational simulations.

 

Real-time Lake Michigan buoy research

Research categories:  Civil and Construction, Computer Engineering and Computer Science, Environmental Science, Physical Science
School/Dept.: School of Civil Engineering
Professor: Cary Troy
Preferred major(s): CE, ECE, or ME
Desired experience:   Experience using Matlab is required; student should have some hands-on experience with tools; student should have strong written communication skills; student should like water (boat experience is a plus).
Number of positions: 1

The student will be working on a Lake Michigan buoy that transmits data in real-time on lake water temperatures and meteorological conditions. This buoy is an important source of information for boaters, anglers, and beachgoers along Lake Michigan's southern coast. In particular, the student will work on developing real-time visualizations of lake subsurface water temperatures on a buoy website. In addition, the student will utilize recently-collected buoy data to characterize lake water temperatures, their seasonal variability, and potentially their forecasted changes under various climate change scenarios.

 

SLEEC: Semantically-enriched libraries for effective exa-scale computation

Research categories:  Aerospace Engineering, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Electronics, Mechanical Systems
School/Dept.: Civil Engineering
Professor: Arun Prakash
Preferred major(s): Structural Engineering, Civil, Mechanical, Aerospace, Computer Science, Electrical
Desired experience:   A strong background in the following areas is preferred: Mathematics, Computer Programming, Mechanics, Physics
Number of positions: 1

This project is in joint collaboration between myself, faculty in the Electrical and Computer Engineering department at Purdue, and a Computational Research Scientist at Sandia National Labs (Albuquerque NM). What we are doing is trying to improve the performance of library subroutines that are commonly employed to solve problems in solid and fluid mechanics, using finite element methods on very large parallel computers, for instance. Most computational libraries are based on well-formulated mathematical operations, however, when researchers utilize these libraries in their own applications, they are unable to transmit this rich mathematical information to the library and to the underlying hardware. We are devising ways to allow researchers to add/annotate these libraries with useful mathematical information that will allow the computer system to make optimizations on the fly to improve the performance of large computational applications. The challenges associated with this project are first to come up with the right set of mathematical information that can enable such performance improvement, and then to find ways to encode into the libraries in a sufficiently general way so that researchers from different disciplines (solids / fluids) may be able to utilize these libraries to their application programs.

 

Understanding How Deicing Salts Interact with Concrete Paving Materials

Research categories:  Chemical, Civil and Construction, Material Science and Engineering
School/Dept.: Civil
Professor: Jason Weiss
Preferred major(s): chemistry, civil engineering, material science, other
Number of positions: 2

Work at Purdue has focused on the development of improved models to predict the service life of concrete when the concrete is exposed to freezing and thawing and/or to the application of deicing salts. Specifically these models are a departure from the current US practice that specifies only air content. The model that is being developed is based on fluid saturation level, fluid composition, and fluid absorption rates. These models are leading to the development of alternative methods to improve freeze-thaw resistance such as the development of Soy-Based concrete sealants which have recently been patented. The student in this project will be expected to perform a series of carefully planned, innovative experiments that relate the salt chemistry with chemical reactions and pavement damage development. This work is currently being developed into a model for use on the national scale.