Research Projects

This is a list of research projects that may have opportunities for undergraduate students. You can browse all the projects, or view only projects in the following categories:

Civil and Construction


Experimental Study of Breakage of Particles under Compression

Research categories:  Aerospace Engineering, Civil and Construction, Material Science and Engineering, Physical Science
School/Dept.: Aeronautics and Astronautics
Professor: Weinong Chen
Preferred major(s): Aeronautics and Astronautics, Materials Engineering, Mechanical Engineering, Civil Engineering
Desired experience:   Any prior experience of using servo-hydraulic machines will be helpful but not required. Microscopy (optical and electron) experience will also be helpful.
Number of positions: 1

Particles in granular materials undergo compressive loading during their manufacturing, processing, handling, transportation, and use. Under large compressive load, some of the particles break. Common example of this phenomenon is breaking of sand particles in sand bags when bullets hit them. Aim of this project is to obtain the complete understanding of causes of particle fracture and also assess the effects of various parameters such as material properties on how particles fracture. To gain this understanding, we need to perform a number of particle compression experiments in which one or two particles will be compressed between two stiff platens at a constant speed. The compression experiments will be repeated for five different materials: soda lime glass, silica sand, polycrystalline silicon, yttria stabilized zirconia, and acrylic (PMMA). The selected student will perform these compression experiments using the servo-hydraulic loading machine. They will then analyze the compression data using MATLAB. They will also observe the fractured particles under optical or electron microscope. The compression data along with the microscopy images will provide us a valuable insight into why and how particles fracture.


In Situ Strain Mapping Experiments

Research categories:  Aerospace Engineering, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Industrial Engineering, Material Science and Engineering, Mechanical Systems
School/Dept.: School of Aeronautics and Astronautics
Professor: Michael Sangid
Preferred major(s): AAE, MSE, or ME
Number of positions: 2

The research we do is building relationships between the material's microstructure and the subsequent performance of the material, in terms of fatigue, fracture, creep, delamination, corrosion, plasticity, etc. The majority of our group’s work has been on advanced alloys and composites. Both material systems have direct applications in Aerospace Engineering, as we work closely with these industries. We are looking for a motivated, hard-working student interested in research within the field of experimental mechanics of materials.

The in situ experiments include advanced materials testing, using state-of-the-art 3d strain mapping. We deposit self-assembled sub-micron particles on the material’s surface and track their displacement as we deform the specimen. Coupled with characterization of the materials microstructure, we can obtain strain localization as a precursor to failure. Specific projects look at increasing the structural integrity of additive manufactured materials and increasing fidelity of lifing analysis to introduce new light weight materials into applications.