Research Projects

This is a list of research projects that may have opportunities for undergraduate students. You can browse all the projects, or view only projects in the following categories:

Civil and Construction


Characterization of Homemade Explosives

Research categories:  Chemical, Civil and Construction, Material Science and Engineering, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: ME
Professor: Steven Son
Preferred major(s): ME, AAE, MSE, or ChE
Desired experience:   Two or more years toward B.S. in engineering or science. US citizens are preferred because student will sometimes need to handle explosives.
Number of positions: 1

The SURF student will work with a team to explore characterization of homemade explosives using small scale experiments or explore “hot spot” formation in high explosives via acoustic stimulation. Microwave interferometry, schlieren imaging, or infrared imaging will be applied to these systems.


Development of Phase Transforming Cellular Materials (Design and 3D Printing)

Research categories:  Aerospace Engineering, Civil and Construction, Material Science and Engineering, Mechanical Systems, Nanotechnology, Physical Science, Other
School/Dept.: Lyles School of Civil Engineering
Professor: Pablo Zavattieri
Preferred major(s): Engineering (Aero, Civil, Mechanical)
Desired experience:   - Mechanics (mechanics of materials, strength of materials) - Background on CAD software, - Some programming experience would be desired
Number of positions: 1

Phase transforming cellular materials (PXCMs) are a new type of energy-absorbing material which can resist high impact loads without experiencing irreversible deformation. PXCMs exhibit the same level of energy dissipation as traditional cellular materials but are capable of returning to their original shape. This new type of material could be utilized in many applications: automobiles, protective gear, or buildings.
PXCMs consist of periodic unit cells. Each unit cell includes several sinusoidal beams and stiffened beams. A unit cell has multiple stable configurations and each stable configuration is associated with a unique stable material phase. Under an impact load, the progressive phase transformation of each unit cell in a PXCM results in energy dissipation.
PXCMs have exhibited excellent performance resisting loads in one direction. However, it is desirable to develop and test PXCMs that are capable of resisting loads from multiple (and even arbitrary) directions. The objective of this project is to fabricate and test new 3D PXCM models. Those models will be designed using computer-aided design (CAD) modeling software and fabricated using a 3D printer. Compression and tension tests will be conducted on testing machines to evaluate the performance of these 3D printed PXCMs. The test results will then be analyzed using scripts in any number of computer languages (e.g. MATLAB, Python, or C).


Development of a new NanoHUB Tool: Coarse graining of Crystalline Nano-Cellulose.

Research categories:  Aerospace Engineering, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Material Science and Engineering, Nanotechnology, Physical Science
School/Dept.: Lyles School of Civil Engineering
Professor: Pablo Zavattieri
Preferred major(s): Engineering (Materials, Mechanical, Civil, Aero, Industrial, etc. ), Physics or Chemistry
Desired experience:   Required: Some Programming (the student will learn how to program in NanoHUB), Desired: - Some basic Mechanics (e.g., strength of materials) - Modeling (atomistic, mechanics)
Number of positions: 1

The purpose of this project is to provide numerical tools for understanding the mechanical properties of Crystalline Nano-cellulose (CNC) at different length scale. Due to defects formation at mesoscale, mechanical properties of nano-materials could decrease dramatically and influence the overall performance of materials. Although there are sufficient and advanced numerical packages for modeling materials at nano-scale and macro-scale, having an efficient and reliable numerical method for meso-scale is still challenging. Here we develop a coarse graining modeling tools which provides insight for CNCs interaction, defects formation and mechanical properties at meso-scale. Students working in this project not only learn some important concepts in engineering, but also learn how develop a tool and work with advanced numerical packages.


Experimental Study of Breakage of Particles under Compression

Research categories:  Aerospace Engineering, Civil and Construction, Material Science and Engineering, Physical Science
School/Dept.: Aeronautics and Astronautics
Professor: Weinong Chen
Preferred major(s): Aeronautics and Astronautics, Materials Engineering, Mechanical Engineering, Civil Engineering
Desired experience:   Any prior experience of using servo-hydraulic machines will be helpful but not required. Microscopy (optical and electron) experience will also be helpful.
Number of positions: 1

Particles in granular materials undergo compressive loading during their manufacturing, processing, handling, transportation, and use. Under large compressive load, some of the particles break. Common example of this phenomenon is breaking of sand particles in sand bags when bullets hit them. Aim of this project is to obtain the complete understanding of causes of particle fracture and also assess the effects of various parameters such as material properties on how particles fracture. To gain this understanding, we need to perform a number of particle compression experiments in which one or two particles will be compressed between two stiff platens at a constant speed. The compression experiments will be repeated for five different materials: soda lime glass, silica sand, polycrystalline silicon, yttria stabilized zirconia, and acrylic (PMMA). The selected student will perform these compression experiments using the servo-hydraulic loading machine. They will then analyze the compression data using MATLAB. They will also observe the fractured particles under optical or electron microscope. The compression data along with the microscopy images will provide us a valuable insight into why and how particles fracture.


Exploring the feedbacks in coupled natural and human systems in response to extreme events using Urban Metabolism Framework

Research categories:  Agricultural, Civil and Construction, Computational/Mathematical, Environmental Science
School/Dept.: ABE/EEE
Professor: Shweta Singh; David Yu (CE)
Preferred major(s): Ag and Biological Engineering, Civil Engineering, Forestry and Natural Sciences, Environmental Engineering and Science
Desired experience:   Land Use Change, Basic Statistics, Food Systems
Number of positions: 2

This is a highly interdisciplinary project cutting across 3 departments and there will be 3 major professors advising the student (Prof Shweta Singh, Prof David Yu and Prof Brady Hardiman). The project will involve literature search, data collection and some mathematical modeling. The details of the project is as follows :

Natural and man-made catastrophes such as severe drought, flood, nuclear disasters, etc. have a severe impact on production of food and food system infrastructure. This may lead to shift in consumption patterns and procuring patterns (such as local farming, urban gardens, etc.) to develop resilience to these extreme events. The goal of this work is identify and quantify the extent of changes in urban metabolism (UM) in response to these events and consequent impact on natural systems; thus exploring the feedback in the coupled natural and human systems (CNHs) in response to extreme events. Specific research questions to be addressed in this SURF projects are:
1. How has urban metabolism changed in response to particular extreme events (drought, flood, tornadoes, infrastructure failures, etc.)? What are exemplary cases of such events and regions?
2. What are short-term and long-term consequences of social adaptations to such extreme events on urban metabolism? Do short-term adaptations lead to unforeseen vulnerabilities of CNHs to different extreme events in the long-run?
3. Did “land use” and local ecosystem change in response to change in Urban metabolism change? (Such as development of backyard farming, local waste to energy, waste generation and disposal)
Research Approach
The summer research will focus on data collection and analysis with respect to these questions. This is a collaborative project between Ag. & Biological Engineering, Civil Engineering, Political Science, Forestry and Natural Resources and Environmental & Ecological Engineering. The project is in collaboration with Professors Shweta Singh, David Yu and Brady Hardiman and the SURF student will be jointly advised by all three.
Data Collection: Student will be expected to collect data for respective urban metabolism variables identified relevant to specific extreme event and also data on land use change for the defined region where there was significant impact of extreme events on urban metabolism.
1. A life cycle approach will be used to study the impact of extreme events on change in UM variable. Professor Shweta Singh will advise the student on quantifying the dependence of the local consumption to production in “distant location”. This will then help relate the potential impact on local food consumption change to production change in other areas. This will be done using an Input-Output model or FAO data. Alternatively, the student will be expected to collect data on consumption pattern change in a local region based on extreme event time map. Specific commodity of consumption that are most effected by extreme events will be targeted.
2. Collect data related to how social systems adapt in response to extreme events and how such social adaptations alter urban metabolism in the long-run. Explore how such changes in urban metabolism affect the capacity of cities to cope with different kinds of disturbances. The data collected will be used to construct systems models to explore the resilience of urban CNHs to unforeseen disturbances.
3. Calculate nitrogen content of food products and waste cycled through urban metabolic processes. Determine origin and destination of this nitrogen content and compare to estimated baseline (‘natural’) ecosystem nitrogen pools and fluxes. Quantify potential land use change associated with extreme events which prompt changes in behavior and urban metabolism.


In Situ Strain Mapping Experiments

Research categories:  Aerospace Engineering, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Industrial Engineering, Material Science and Engineering, Mechanical Systems
School/Dept.: School of Aeronautics and Astronautics
Professor: Michael Sangid
Preferred major(s): AAE, MSE, or ME
Number of positions: 2

The research we do is building relationships between the material's microstructure and the subsequent performance of the material, in terms of fatigue, fracture, creep, delamination, corrosion, plasticity, etc. The majority of our group’s work has been on advanced alloys and composites. Both material systems have direct applications in Aerospace Engineering, as we work closely with these industries. We are looking for a motivated, hard-working student interested in research within the field of experimental mechanics of materials.

The in situ experiments include advanced materials testing, using state-of-the-art 3d strain mapping. We deposit self-assembled sub-micron particles on the material’s surface and track their displacement as we deform the specimen. Coupled with characterization of the materials microstructure, we can obtain strain localization as a precursor to failure. Specific projects look at increasing the structural integrity of additive manufactured materials and increasing fidelity of lifing analysis to introduce new light weight materials into applications.


Microbes in the Air: Dynamics of Airborne Bacteria, Fungi & Pollen in a Living Laboratory

Research categories:  Agricultural, Bioscience/Biomedical, Chemical, Civil and Construction, Environmental Science, Life Science, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: Civil Engineering
Professor: Brandon Boor
Preferred major(s): I am recruiting students from all engineering and science majors
Desired experience:   Some experience with MATLAB and programming is preferred.
Number of positions: 1

Our homes and offices are home to trillions of microorganisms, including diverse communities of bacteria and fungi. My research group explores the dynamics of airborne microorganisms, or bioaerosols, in buildings. These are incredibly small airborne particles, less than 10 micrometers in size - one-tenth the thickness of your hair! Bioaerosols can be released from our bodies, stirred-up from house dust, and can flow into buildings from the outside via ventilation. By developing a deeper understanding of the emissions, transport, and control of bioaerosols, we can work towards buildings that promote healthy microbial communities.

In this project, you will use our state-of-the-art research facilities to measure, in real-time, concentrations of bioaerosols in a living laboratory (occupied office) at Herrick Laboratories in Discovery Park. You will learn how to develop an experimental plan, conduct air quality measurements, and analyze bioaerosol data. Most importantly, the data you collect will help us learn how people, and the buildings in which we live, influence the behavior of these tiny airborne particles. The project is very well-suited for anyone interested in microbiology, air quality, human health, HVAC systems, or atmospheric science.

More information:


Turbulence characterization in the bottom boundary layer of Lake Michigan

Research categories:  Civil and Construction, Environmental Science, Physical Science, Other
School/Dept.: School of Civil Engineering
Professor: Cary Troy
Preferred major(s): Civil or mechanical engineering
Desired experience:   Student must be proficient in use of Matlab, and should have taken a first course in fluid mechanics or hydraulics. Experience with water (lakes, rivers, oceans) is also helpful, as are courses in basic statistics.
Number of positions: 1

This project aims to characterize near-bottom turbulence in the deep waters of Lake Michigan, for the purpose of better understanding the impact of invasive mussels in the lake. Turbulence remains one of the most challenging topics in fluid mechanics, particularly in the deeper waters of large lakes. The student researcher will analyze a set of velocity, temperature, and fluorescence data collected in Lake Michigan for the purpose of estimating turbulence quantities, including turbulent kinetic energy, shear velocity, Reynolds Stress, and turbulent kinetic energy dissipation. The student will work closely with graduate student researchers and the summer project may involve additional field work.