Research Projects

This is a list of research projects that may have opportunities for undergraduate students. You can browse all the projects, or view only projects in the following categories:



3D Printed Nanostructures: Thermal and Thermoelectric Applications

Research categories:  Chemical, Electronics, Innovative Technology/Design, Material Science and Engineering, Nanotechnology
School/Dept.: Mechanical Engineering
Professor: Amy Marconnet
Preferred major(s): Mechanical, Chemical, Materials, or Electrical Engineering
Desired experience:   Courses in chemistry, heat transfer, and fluid mechanics. Experience with programming arduino or raspberry pi type systems. Familiarity with CAD software and general computer programming skills.
Number of positions: 1 or 2

Nanostructured materials are enabling technological advances, but fabrication costs can mitigate performance improvements. Solution synthesis of nanoparticles is a low-cost, high-throughput method for generating nanostructures. Combined with inkjet and\or 3d printing technology these nanoinks can be formed into on demand devices. In this project, students will develop a technique for printing thermoelectric devices and metallic heater/electrode lines for thermal analyses.


Bio/Pharmaceutical Lyophilization

Research categories:  Aerospace Engineering, Bioscience/Biomedical, Chemical, Computational/Mathematical, Industrial Engineering, Innovative Technology/Design, Mechanical Systems
School/Dept.: AAE
Professor: Alina Alexeenko
Preferred major(s): AAE, ME, CE, BME, Physics
Desired experience:   Fluid dynamics coursework, programming experience.
Number of positions: 2

Freeze-drying, also called lyophilization, is widely used in manufacturing of injectable pharmaceuticals, vaccines, biotech products, food and probiotic cultures. The research involves first-principles modeling of fluid dynamics and heat transfer in industrial lyophilizers and validation of models by comparison with experimental data collected in lab and pilot production settings. The summer undergraduate researcher will be involved in developing computational models and analyzing experimental data.


Cationic Amphiphilic Polyproline Helices for Antibacterial Activity

Research categories:  Bioscience/Biomedical, Chemical, Life Science, Other
School/Dept.: Chemistry
Professor: Jean Chmielewski
Preferred major(s): Chemistry
Number of positions: 1

The passive uptake of genes, polypeptides, particles and, at times, small molecules into cells is prohibited due to their inability to adequately cross the membrane bilayer. We have designed a class of molecules, cationic amphiphilic polyproline helices (CAPHs) that have been shown to effectively translocate mammalian cell membranes and display potent antibacterial activity. The goals of the proposed research are to probe the specific structural features within CAPHs that allow for efficient cell uptake and antibacterial action, while developing a mechanistic model for CAPH activity. Additionally we will seek to harness the remarkable cell penetrating and antimicrobial characteristics of CAPHs to target elusive pathogenic bacteria within mammalian cells.

With the knowledge that diverse CAPHs result in effective cell penetration, subcellular localization and antibacterial activity in vitro and in cyto, and with the mechanistic insight that resulted from these studies, we propose to address the following questions:
1. What effect does further structural modification of CAPHs have on cell penetration and subcellular localization, and how are these data linked to antibacterial activity in vitro and in cyto?
2. What is the mechanism of antibacterial activity and cell penetration of the designed CAPHs?


Characterization of Fiber Reinforced Composite Materials

Research categories:  Aerospace Engineering, Chemical, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Industrial Engineering, Material Science and Engineering
School/Dept.: School of Aeronautics and Astronautics
Professor: Sangid Michael
Preferred major(s): AAE, ME, MSE, IE, ChE, CE, NE, CS
Desired experience:   Preferably junior standing
Number of positions: 2

We are looking for motivated, hard-working undergraduate students interested in experimental composite materials research. This position is on a team investigating fiber orientation and length measurements in thermoplastic composites. These long fiber composites have a direct application to replace steel and aluminum structural alloys in the aerospace and automotive industries. Our team is comprised of Pacific Northwest National Lab, Autodesk, Plasticomp, Magna, Toyota, University of Illinois, and Purdue. Applicants will work under the mentorship of a graduate student and faculty member. The position includes hands on specimen preparation, in the form of extracting and polishing samples for fiber orientation measurements and melting samples and isolating the pertinent fibers for length measurements.


Crystal Engineering of Organic Crystals

Research categories:  Chemical, Computational/Mathematical, Material Science and Engineering, Physical Science
School/Dept.: Industrial & Physical Pharmacy
Professor: Tonglei Li
Preferred major(s): chemistry, chemical engineering
Number of positions: 1

Crystallization of organic materials plays a central role in drug development. Mechanistic understanding of nucleation and crystal growth remains primitive and scantily developed despite decades of investigation. Of the same organic molecule, distinct crystal structures can be routinely formed. The intricacy of the so-called polymorphism largely originates from the rich and unpredictable supramolecular tessellations supported by intermolecular interactions. The subtleties in strength and directionality of the interactions are controlled by structural diversity and conformational flexibility of molecule. In fact, it is these molecular interactions that make organic crystal structures fascinating as it is unlikely to predict crystal structures of a given organic molecule a priori.

In this project, the student will learn how to grow drug crystals, characterize them, and connect the structural outcome with crystallization conditions. It is expected that the student will conduct both experimental and computational studies in order to understand formation mechanisms of drug crystals.

More information:


Development of Theranostic Drug Delivery Systems for Cancer Treatment

Research categories:  Bioscience/Biomedical, Chemical, Material Science and Engineering, Nanotechnology
School/Dept.: Industrial & Physical Pharmacy
Professor: Tonglei Li
Preferred major(s): chemistry, chemical engineering, biomedical engineering, biological engineering
Number of positions: 1

Drug delivery for cancer therapy is far from being satisfactory. A significant portion of potential drug compounds fail to enter the clinic because they cannot be formulated and delivered by existing approaches. Many clinically used formulations are poorly designed, bearing significant adverse effects and limiting treatment efficacy. Over the last few years, nanotechnology has been embraced for developing novel drug delivery systems to combat diseases such as cancer and infection. In our laboratory, we have been developing multicomponent nanocrystals to deliver cytotoxic agents along with bioimaging probes to treat and detect tumors. In this project, the delivery system will be fully tested in vitro and in vivo in order to understand the pharmacokinetic and biodistribution properties and to further improve the formulation design. In particular, the student will be learning and conducting cellular uptake experiment and help graduate students in their animal studies. It is expected that the student will gain a basic understanding of drug delivery for cancer and comprehend the current challenges in cancer therapy. The student will also learn the underlying design principles of our delivery system and, hopefully, provide meaningful suggestions for improvement.


Hydrophobic Zeolites for Applications in Adsorption and Catalysis

Research categories:  Chemical
School/Dept.: Chemical Engineering
Professor: Rajamani Gounder
Preferred major(s): Chemical Engineering
Number of positions: 1

Zeolites are microporous materials whose internal pores and external properties can be functionalized to be hydrophobic. These materials open new opportunities for performing selective catalytic reactions in liquid water, and for selective separations of non-polar and organic molecules from polar and aqueous solvents. These are fundamental scientific issues that are relevant in the conversion of lignocellulosic biomass to renewable chemicals and fuels, and for the conversion of natural and shale gas. This project will involve learning techniques to synthesize and functionalize hydrophobic zeolites and to characterize their hydrophobic properties.


Oil-in-water Emulsion Flows through Confined Channels

Research categories:  Chemical, Computational/Mathematical, Physical Science
School/Dept.: Mechanical Engineering
Professor: Arezoo Ardekani
Preferred major(s): Mechanical Engineering, Chemical Engineering, Physics
Desired experience:   Fluid dynamics, Programming experience
Number of positions: 1

The main goal of this project is to characterize transport of monodisperse and poly-disperse oil-in-water emulsions through confined channels by utilizing LAMMPS. A mesoscopic method called dissipative particle dynamics (DPD) will be used to capture the interaction of the droplets with hydrophilic and hydrophobic boundaries of the channel. We will quantify the transport properties of the emulsion for different scenarios, by varying the droplet size, surface properties of the channel, and addition of surfactants. Surfactant molecules are amphiphilic molecules, containing a hydrophobic tail and a hydrophilic head.


Quantification of metabolic rates in photosynthetic organisms for production of renewable chemicals

Research categories:  Agricultural, Bioscience/Biomedical, Chemical
School/Dept.: Chemical Engineering
Professor: John Morgan
Preferred major(s): Chemical Engineering or Biochemistry
Desired experience:   knowledge of biochemistry, enzyme kinetics, mass balances
Number of positions: 1

The overall reserach aim is to understand how metabolic pathways in photosynthetic organisms respond to changes in environmental stimuli. In this project, the student will participate in experiments in which microalgae are fed isotopically labeled substrates. The rates of conversion of these intermediates will be analyzeded by liquid chromatagraphy coupled to mass spectrometry. The specific aim of this project is the understanding of how photosynthetic metabolism responds to environmental changes such as light wavelength and intensity. This knowldege is critical to rationally design metabolic pathways for production of renewable chemicals.


Recovery of Nutrients from Animal and Human Wastes

Research categories:  Agricultural, Chemical, Civil and Construction, Environmental Science
School/Dept.: CE and EEE
Professor: Ernest Blatchley
Preferred major(s): ABE, CE, EEE, ChE, BME
Desired experience:   First-year engineering, CE/EEE 350, previous lab experience is helpful but not required.
Number of positions: 2

Animal and human wastes are treated prior to disposal or release to the environment for purposes of controlling adverse impacts associated with these materials. However, some constituents within these wastes also represent potentially-valuable resources. If properly managed, these waste products can allow for recovery of valuable resources, and may represent a source of revenue. The aim of this project is to test, at bench-scale, treatment processes for recovery of nutrients and conversion of treated waste materials to a marketable fertilizer.

The specific approach in this project is modeled after a treatment system that has been implemented for recovery of nutrients from human urine at EAWAG (Eigenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz, or Swiss Federal Institute for Environmental Science and Technology, Dübendorf, Switzerland). In this system, human urine is introduced to a reactor system in which partial nitrification of urea (and other sources of organic-N) is accomplished by nitrifying bacteria. The goal of this process is to convert urea (and other forms of organic-N) into ammonium nitrate. The nitrifying population is maintained as attached-growth on a medium that is suspended in the reactor. Oxygen requirements for the system are met by aeration. A clarifier follows the nitrification reactor to allow for separation of solids that are generated in the process. The partially-nitrified urine is then introduced to a distillation device to allow for separation of a large fraction of the remaining water. The products of this system are distilled water and a concentrated aqueous solution that contains nearly all of the macronutrients (N, P, and K) that were present in the original material (Udert and Wächter, 2012).

The proposed project will involve construction and implementation of two to four bench-scale reactors for use in treatment of waste materials that are similar to those that are treated by the EAWAG system. However, the waste materials chosen for this application are local to Purdue University.

Project Tasks
The list below describes tasks that are to be completed in this project. The overall objective of this project is to define the dynamic behavior of a nitrification/distillation system for recovery of macronutrients from animal and human waste materials. We envision two students being supported by this project to conduct the work described below.

1. Bench scale treatment:
a. Reactor construction – two to four bench-scale (1.0 L) nitrification reactors will be built in the Environmental Engineering laboratories at Purdue University. The reactors will be installed in a hood as a means of controlling odors associated with the substrates. Each reactor will consist of a 1.0 L gas-tight reactor, a small clarifier, and a small distillation unit.
b. Nitrification will be accomplished using an attached-growth culture of nitrifiers. Both reactors will be “seeded” with bacteria from an operating attached-growth system as a means of reducing the time period associated with reactor start-up. One of the reactor systems will be fed human urine from volunteers who work in Hampton Hall at Purdue University. Human urine was selected for use in this system so as to allow for direct comparison with the existing system at EAWAG. The remaining reactors will be fed a liquid waste material from BioTownAg in Reynolds, IN. The waste materials to be applied to each of these reactors will be identified in consultation with BioTownAg. Candidate waste materials include swine urine, untreated digestate, and treated digestate (solids removed).
c. Distillation of the treated waste will be accomplished using a commercially-available home water distiller.
d. The liquid product from this system will be collected and analyzed for chemical content, including N, P, and K.
2. Economic and market analysis: The potential market value of the liquid materials that are generated from these systems will be evaluated. In addition to chemical (nutrient) content, it is possible that one or more of these materials may be identified as organic fertilizer products. The “organic” label has potentially important implications in terms of the market value of these products. This market and economic analysis will include a review of the pertinent literature.
3. Mass and energy balance of the bench scale research: to the extent possible, mass and energy balances will be performed on the systems. The objectives of these calculations are to provide credible estimates of energy efficiency and resource recovery potential from these systems.
4. Preliminary design: Results from these bench-scale experiments will be used to develop designs for reactors to treat these same waste materials at pilot-scale.

Udert, K.M.; Buckley, C.A.; Wächter, M.; McArdell, C.S.; Kohn, T.; Strande, L.; Zöllig, H.; Hug, A.; Obserson, A.; Etter, B. (2014) “Technologies for the treatment of source-separated urine in the eThekwini municipality,” Proceedings, WISA Biennial Conference, Mbombela, Mpumalanga, South Africa.

Udert, K.M.; Wächter, M. (2012) “Complete nutrient recovery from source-separated urine by nitrification and distillation,” Water Research, 46, 453-464.