Research Projects

Projects are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2018 Research Symposium Abstracts.

2019 projects will continue to be posted through January!

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:

Aerospace Engineering


A New Ignition Technology for Lean-burn Combustion Engines

Research categories:  Aerospace Engineering, Mechanical Engineering
School/Dept.: Aeronautics & Astronautics
Professor: Li Qiao
Preferred major(s): Mechanical or Aerospace Engineering
Desired experience:   Thermodynamics, fluid mechanics, experimental skills, design experience

The gas turbine and internal combustion engine industries are pushing towards lean-burn combustion. Lean combustion means a small amount of fuel (much lower than the stoichiometric condition) is supplied and burned in the combustion chamber. The biggest advantage of lean-burn combustion is that it can lower emissions. However, lean-burn technologies have several challenges. One of the challenges is ignition, which becomes difficult for lean fuel/air mixtures. A potential solution is to use hot turbulent jets to ignition a lean mixture, rather than a spark plug. The hot jets are generated by burning a near-stoichiometric mixture in a small volume called pre-chamber.

This research will investigate the ignition behavior of a lean mixture by a hot turbulent jet. The undergraduate researcher will work closely with a graduate student on experiments. High-speed imaging techniques will be applied to visualize the jet penetration and ignition processes in a combustor at Zucrow Laboratories.


Additive Manufacturing (3D Printing) of Solid Propellants

Research categories:  Aerospace Engineering, Chemical, Material Science and Engineering, Mechanical Engineering
School/Dept.: ME
Professor: Steven Son
Preferred major(s): ME, AAE, ChE or MSE
Desired experience:   Junior or senior level students are preferred. Aptitude and interest in graduate school also desirable. Good laboratory or hands on work experience desirable.

Significant advancements have been made in the fabrication of energetic materials with additive manufacturing (AM) processes. The geometric flexibility of AM has been touted, but little has been done to combine complex geometries with spatially-varying thermodynamically optimized materials in solid propellants. Investigation of the intersection of these areas is needed to fulfill the potential of tailorability of AM processes for propellant optimization. The propellant grains result in complex geometries. Recent development of an ultrasonic-vibration assisted direct write printing system at Purdue has opened a range of new materials for printing. Steps are being taken to combine AM techniques in a single, multi-nozzle printer to allow continuous fabrication of a propellant with two or more major components. This project will focus on printing thermodynamically optimized solid propellants in with a range of internal geometries and investigating their effects with classical and more recent diagnostic techniques.


Characterization of Decomposition and Detonation of Cocrystal Explosives

Research categories:  Aerospace Engineering, Chemical, Material Science and Engineering, Mechanical Engineering
School/Dept.: ME
Professor: Steven Son
Preferred major(s): ME, AAE, ChE or MSE
Desired experience:   Junior or Senior UG students preferred. Good lab skills are highly desired.

Cocrystal explosives offer the possibility improved safety and performance over conventional materials. The SURF student would assist graduate students in the study of novel cocrystal explosives. Both slow heating and detonation experiments and detonation experiments will be designed and performed.


Enhance the Burn Rate of Solid Propellants

Research categories:  Aerospace Engineering, Mechanical Engineering
School/Dept.: Aeronautics & Astronautics
Professor: Li Qiao
Preferred major(s): Aerospace Engineering
Desired experience:   Thermodynamics, aerodynamics, propulsion

Composite solid propellants are a major source of chemical energy for most of the solid rockets in use today with applications to space, ballistic, tactical and assist propulsion, and are made up of three components: binder, energetic fuel and oxidizer. Enhancing the burn rates of solid propellants is crucial for improving performance of solid rocket motors in terms of higher thrust, simplified propellant grain geometry, and reduced overall size and weight of the propulsion system.

In this research, the undergraduate student will work closely with a graduate student to explore methods to enhance the burn rates of solid propellants. The nature of the research is experimental, involving materials synthesis and characterization, combustion measurement using high-speed infrared camera, and data collection and analysis.


Illumination of Damage through Microtomography

Research categories:  Aerospace Engineering, Computer Engineering and Computer Science, Industrial Engineering, Material Science and Engineering, Mechanical Engineering
School/Dept.: Aeronautics and Astronautics
Professor: Michael Sangid
Preferred major(s): AAE, ME, MSE, EE, CSE, or IE
Desired experience:   Students are expected to work with Image Processing and Visualization tools, as well as Matlab.

Damage in structural materials is often difficult to quantify, instead we rely on large scale component level testing and curve fitting. With the advent of advanced microtomography, we have the ability to identify damage inside the bulk of the material, in which the samples are subjected to mechanical loading. Thus, in this project, microtomography scans will be reconstructed and the damage in the form of voids or cracks will be characterized and quantified in several material systems (including carbon fiber reinforced composites and Ti-6Al-4V produced via additive manufacturing). The interaction of damage with microstructural features will be assessed, in order to achieve a physics-based understanding of material failure.


Preliminary Design of a 10-passenger Regional Electric Aircraft

Research categories:  Aerospace Engineering, Mechanical Engineering
School/Dept.: ME
Professor: Nicole Key
Preferred major(s): AAE or ME
Desired experience:   Students who have taken Aircraft design related courses are strongly encouraged to apply.

The goal of the project is to explore the design envelope for regional electric aircrafts. The project starts with mission requirements including input information of range and maximum takeoff weight. Preliminary design of the aircraft will be performed including trade studies.


Processing of innovative satellite remote sensing data for ocean and snow remote sensing

Research categories:  Aerospace Engineering, Computer Engineering and Computer Science, Electronics, Environmental Science, Physical Science
School/Dept.: AAE
Professor: James Garrison
Preferred major(s): ECE, AAE, Physics, EAPS
Desired experience:   Good programming skills, signal processing (ECE 301 or AAE301). Experience with software defined radio (USRP) will be a plus.

Reflectometry is a new approach to Earth remote sensing in microwave frequencies, using reflections of Global Navigation Satellite System (GNSS, e.g. GPS, Galileo, etc ...) signals from land and ocean surfaces as illumination source in a bistatic radar configuration. Through observing measurable changes in the properties of these signals, various features of the reflecting surfaces can be inferred.

Ocean surface winds is the most developed application for GNSS-Reflectometry (GNSS-R), with the launch of the CYGNSS constellation by NASA in 2016. CYGNSS data has been collected during the 2017 and 2018 Hurricane seasons, showing some capability for wind field measurements at a high spatial resolution. New models and algorithms are required, however, to optimally process these data and extract wind vectors with high sensitivity, especially at the higher wind speeds present in hurricanes. Development of these new models and algorithms requires the collection of high-quality data under carefully controlled conditions along with in situ training data provided by independent sources. With this goal in mind, Purdue has developed a wideband GNSS-R signal recorder which will be flown on the P-3 “Hurricane Hunter” aircraft operated by NOAA. This aircraft is capable of operating in extremely high winds and penetrating the Hurricane eye wall, in order to collect data inside developing tropical cyclones. GNSS-R data collected in this experiment will be compared with wind speed observations from other instruments on the P-3 aircraft, other satellite data, and model results. These comparisons will be used to develop and improved model for the extraction of ocean winds from CYGNSS and future satellite missions.

Snow Water Equivalent (SWE) is a representation of the total water stored in the snow pack. This is an important climate variable for the prediction of fresh water supplies as well as applications such as hydroelectric power. A new application of GNSS-R is measuring SWE as a change in phase of the reflected signal, a result of the slower propagation of the signal through the snow layer. Spaceborne measurements of SWE using GNSS-R have never been conducted. Special collections of CYGNSS data were conducted this year, in which raw signals (no on-board processing or compression) were collected in arcs spanning snow-covered regions in the Himalayan mountains.

SURF projects are proposed to support these two research goals for CYGNSS data. Both will involve extensive programming and data processing, using a “software defined radio” method that essentially implements all signal processing in software to operate on the full-spectrum of the recorded signal.

Applicants should have very strong programming skills, some knowledge of basic signal processing.


Remote sensing of soil moisture and forest biomass using P-band Signals of Opportunity: Model development and experimental validation

Research categories:  Agricultural, Aerospace Engineering, Electronics, Environmental Science, Physical Science
School/Dept.: AAE
Professor: James Garrison
Preferred major(s): ECE, AAE, Physics, ABE
Desired experience:   Basic signal processing (AAE 301 or ECE 301 or equivalent) desired. Students should know how to use basic hand tools, and be willing to work outdoors in agricultural or forest environments. A drivers license and reliable access to a car is required for field work.

Root Zone Soil Moisture (RZSM), defined as the water profile in the top meter of soil where most plant absorption occurs, is an important environmental variable for understanding the global water cycle, forecasting droughts and floods, and agricultural management. No existing satellite remote sensing instrument can measure RZSM. Sensing below the top few centimeters of soil, often through dense vegetation, requires the use of microwave frequencies below 500 MHz, a frequency range known as “P-band”. A P-band microwave radiometer would require an aperture diameter larger than 10 meters. Launching such a satellite into orbit will present big and expensive technical challenge, certainly not feasible for a low-cost small satellite mission. This range for frequencies is also heavily utilized for UHF/VHF communications, presenting an enormous amount of radio frequency interference (RFI). Competition for access to this spectrum also makes it difficult to obtain the required license to use active radar for scientific use.

Signals of opportunity (SoOp) are being studied as alternatives to active radars or passive radiometry. SoOp re-utilizes existing powerful communication satellite transmissions as “free” sources of illumination, measuring the change in the signal after reflecting from soil surface. In this manner, SoOp methods actually make use of the very same transmissions that would cause interference in traditional microwave remote sensing. Communication signal processing methods are used in SoOp, enabling high quality measurements to be obtained with smaller, lower gain, antennas.

Under NASA funding, Purdue and the Goddard Space Flight Center have developed an airborne prototype P-band remote sensing instrument to demonstrate the feasibility of a future satellite version. Complementing this technology development, a field campaign will be conducted for its third year the Purdue Agricultural research fields. This campaign will make reflected signal measurements from towers installed over instrumented fields. Measurements will be obtained over bare soil first, and then throughout the corn or soybean growth cycle. Complementing these remote sensing measurements, a comprehensive set of ground-truth data will also be collected for use in developing models and verifying their performance.

In Spring 2019 an additional experiment, using a small Unpiloted Aerial Vehicle (UAV), will be conducted in a forested area in collaboration with the School of Forestry and Natural Resources (FRN).

Work under this project will involve installing microwave electronic equipment in the field, writing software for signal and data processing, and making field measurements of soil moisture and vegetation properties.

Students interested in this project should have good programming skills and some experience with C, python and MATLAB. They should also have a strong background in basic signal processing. Experience with building computers or other electronic equipment will also be an advantage. Students should be willing to work outdoors and have an interest in applying their skills to solving problems in the Earth sciences, environment, or agriculture.

The project will involve regular travel to and from the local research field, so students should have a driving license and access to a car.