Skip navigation

Research Projects

Projects are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2017 Research Symposium Abstracts.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list, or view only projects in the following categories:

Aerospace Engineering

 

Characterization of strain localization and associated failure of structural materials

Research categories:  Aerospace Engineering, Computational/Mathematical, Computer Engineering and Computer Science, Material Science and Engineering, Mechanical Systems
School/Dept.: School of Aeronautics and Astronautics
Professor: Michael Sangid
Preferred major(s): AAE, MSE, ME, CS

The research we do is building relationships between the material's microstructure and the subsequent performance of the material, in terms of fatigue, fracture, creep, delamination, corrosion, plasticity, etc. The majority of our group’s work has been on advanced alloys and composites. Both material systems have direct applications in Aerospace Engineering, as we work closely with these industries. We are looking for a motivated, hard-working student interested in research within the field of experimental mechanics of materials. The in situ experiments include advanced materials testing, using state-of-the-art 3d strain mapping. We deposit self-assembled sub-micron particles on the material’s surface and track their displacement as we deform the specimen. Coupled with characterization of the materials microstructure, we can obtain strain localization as a precursor to failure. Specific projects look at increasing the structural integrity of additive manufactured materials and increasing fidelity of lifing analysis to introduce new light weight materials into applications.

 

Seismic Design of Aboveground Storage Tanks

Research categories:  Aerospace Engineering, Civil and Construction, Computational/Mathematical, Mechanical Systems
School/Dept.: Lyles School of Civil Engineering
Professor: Sukru Guzey
Preferred major(s): Civil Engineering, Mechanical Engineering, Aerospace Engineering
Desired experience:   Statics (CE 297 or similar), Dynamics (CE 298 or similar), Mechanics of Materials (Strength of materials) (CE 270 or similar)

Cylindrical steel storage tanks are essential parts of infrastructure and industrial facilities used to store liquids. There are millions of welded steel tanks in the world storing flammable and or hazardous liquids in the petroleum, petrochemical, chemical and food industries across the world. Mechanical integrity and safe operation of these tanks very important because failure or loss of containment of such tanks may have catastrophic consequences to the human life and the environment. There are many procedures given in design standards to withstand the possible load effects, such as the hydrostatic pressure of the stored liquid, the external wind pressure, internal and external pressures due to process, and seismic events.

Investigators have a relatively well understanding on the load effects due to the hydrostatic, wind, and external/internal pressures due to process during normal operating levels. However, behavior of large, aboveground, steel, welded, liquid storage tanks under the presence of seismic loads introduce several critical failure criteria to the structure not exhibited during normal operating levels. Although many researchers investigated the liquid containers under dynamic excitations, the research on this subject still active. The bottleneck of this research topic is the intricate interplay between the flexible thin-walled tank wall and bottom, liquid inside the container, and the reinforced concrete or soil foundation supporting the container. Although, are many relatively recent research efforts, there is still a gap to find a viable solution to this problem.

To address this gap, the aim of this work is to perform a study on seismic design of aboveground storage tanks. Dr. Guzey with a team of one doctoral student and one undergraduate SURF student, shall perform analytical and numerical studies to study the behavior of liquid containers under dynamics excitations. We shall conduct numerical experiments using different levels of complexity and fidelity of multi-physics of these containers and compare the results to available analytical solutions, physical tests and current design standards. The undergraduate SURF student will work under the mentorship of Dr. Guzey and a graduate student. The SURF student compile a literature review, perform numerical simulations using FEA computer program ABAQUS, and write scientific research papers and conference presentations.