Research Projects

Projects for 2017 are posted below; new projects will continue to be posted through February. To learn more about the type of research conducted by undergraduates, view the 2016 Research Symposium Abstracts.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list, or view only projects in the following categories:

 

3D Printed Hydraulic Systems

Research categories:  Mechanical Systems
School/Dept.: Mechanical Engineering
Professor: Sadegh Dabiri
Number of positions: 1

The project’s main goal is to build a light and compact portable hydraulics and fluids mechanics kit to build robots and machines to promote the use of fluid power in schools and as an outreach tool for community engagement. The student will help in building 3-D printed prototypes of various hydraulic components to assemble with the kit for advancing education in: 1) hydraulic systems and 2) general fluid mechanics phenomena. The kit and curriculum will be used in workshops held at local high schools and, or community events in the greater Lafayette area and possibly the neighboring region. The project provides a great opportunity for students to have hands-on experience in design and 3D printing components and learning about hydraulic systems.

 

Center for Materials Under Extreme Environment (CMUXE) - Undergraduate research opportunities

Research categories:  Bioscience/Biomedical, Computational/Mathematical, Material Science and Engineering, Nanotechnology, Physical Science
School/Dept.: Nuclear Engineering
Professor: Ahmed Hassanein
Desired experience:   Minimum GPA 3.5
Number of positions: 3-4

The Center for Materials Under Extreme Environment (CMUXE) is looking for undergraduate research students for the following areas:

1. Ion beams and plasma interaction with materials for various applications
2. Magnetic and Inertial Nuclear Fusion
3. Laser-produced plasma (LPP) and Discharge-produced plasma (DPP)
4. Nanostructuring of material by ion and laser beams
5. High energy density physics applications
6. Laser-induced breakdown spectroscopy (LIBS)
7. Plasma for biomedical applications
8. Extreme ultraviolet (EUV) lithography
9. Computational physics for nuclear fusion, lithography, and other applications

Research of undergraduate students at CMUXE during previous SURF programs has resulted in students acquiring new knowledge in different areas and led to several joint publications, participation in national and international conferences, seminars, and provided experience in collaborative international research.

Several undergraduate and graduate students working in CMUXE have won national and international awards and have presented their work in several countries including Australia, China, Germany, Ireland, Japan, and Russia.

Position is open to undergraduates in all engineering and science disciplines. High level commitment and participation in group meetings are compulsory. Interested candidates are encouraged to visit the center website below for further information.

 

Fluid Dynamics of Bacterial Aggregation and Formation of Biofilm Streamers

Research categories:  Bioscience/Biomedical, Chemical, Computational/Mathematical, Physical Science
School/Dept.: Mechanical Engineering
Professor: Arezoo Ardekani
Number of positions: 1

Bacteria primarily live within microscopic colonies embedded inside a self-secreted matrix of polymers and proteins. These microbial biofilms form on natural and man-made surfaces and interfaces and play important roles in various health and environmental issues. Previous experimental studies have indicated the significance of bacterial motility mechanisms in the colonization process and the subsequent biofilm formation. In particular, flagellar mediated swimming is crucial in approaching the surface and initiating the adhesion process. Understanding the swimming strategy of bacteria in confined geometries is shown to be a decisive factor in identifying the adhesion rate and elucidating the subsequent colonization process. However, majority of studies focused on the swimming behavior of motile cells in complex fluids have been conducted assuming the cells’ habitat to be an unbounded domain and thus, the boundary induced effects, such as surface trapping and wall accumulation, are poorly understood. The student will investigate the motion of microorganisms in complex fluids near boundaries.

 

Heterogeneous Deformation and Strain Localization as a Precursor to Failure in Aerospace Materials

Research categories:  Aerospace Engineering, Computational/Mathematical, Material Science and Engineering
School/Dept.: AAE
Professor: Michael Sangid
Preferred major(s): AAE, MSE, ME, CS
Number of positions: 1

The research we do is building relationships between the material's microstructure and the subsequent performance of the material, in terms of fatigue, fracture, creep, delamination, corrosion, plasticity, etc. The majority of our group’s work has been on advanced alloys and composites. Both material systems have direct applications in Aerospace Engineering, as we work closely with these industries.

We are looking for a motivated, hard-working student interested in research within the field of experimental mechanics of materials. The in situ experiments include advanced materials testing, using state-of-the-art 3d strain mapping. We deposit self-assembled sub-micron particles on the material’s surface and track their displacement as we deform the specimen. Coupled with characterization of the materials microstructure, we can obtain strain localization as a precursor to failure. Specific projects look at increasing the structural integrity of additive manufactured materials and increasing fidelity of lifing analysis to introduce new light weight materials into applications.

 

Lets replace this outdated E-Textbooks with something that works and is inexpensive!

Research categories:  Computer Engineering and Computer Science, Educational Research/Social Science
School/Dept.: EAPS
Professor: Greg Michalski
Preferred major(s): Computer science; Computer Engineering
Desired experience:   HTML, JAVA, PHP programming languages
Number of positions: 1-2

I am seeking Computer Science and Engineering students who are interested in creating a new digital learning tool that will replace E-textbooks. We will build a cloud-based platform that will allow teachers, professors, or other individuals to produce multimedia pages with embedded text, sound, video, quizzing, web-links, and external apps. This product is then published online and availed for purchase by students as a more effective and low cost alternative to traditional textbooks or e-textbooks. Student would need to be competent in one or more of these languages: java, html, php, Mysql.

 

Metabolic Engineering of Cyanobacteria for Chemical Production

Research categories:  Bioscience/Biomedical, Chemical, Life Science
School/Dept.: Chemical Engineering
Professor: John Morgan
Preferred major(s): Biochemistry, Chemical Engineering, ABE
Desired experience:   Biochemistry
Number of positions: 1

Cyanobacteria are single celled organisms that utilize sunlight to drive the reduction of CO2 into all the organic chemicals necessary for life. Hence, they are a potential alternative to petroleum as source of chemicals. Compared to plants, these bacteria grow significantly faster, require low nutrient input and are easier to process than plants. Cyanobacteria are also readily genetically engineered with foreign DNA. The goal of this project is to insert a foreign pathway consisting of several genes into a cyanobacteria to manufacture a valuable chemical. The student will also analyze the effects of light and CO2 on the amount of chemical produced.

 

MicroRNA Involvement in Cancer

Research categories:  Bioscience/Biomedical, Life Science
School/Dept.: Biological Sciences
Professor: Andrea Kasinski
Preferred major(s): Biology or Biochemistry
Desired experience:   Molecular biology background.
Number of positions: 1-2

Our lab works on non-coding RNAs, specifically microRNAs and their involvement in cancer. We work to identify novel RNAs, gain an understanding of their biogenesis and misrepresentation in cancer and then utilize this knowledge to develop RNA-based therapies. There are multiple potential summer projects in the lab. Please visit our lab website and contact Dr. Kasinski for more information.

 

Network for Computational Nanotechnology (NCN) / nanoHUB

Research categories:  Computational/Mathematical, Computer Engineering and Computer Science, Electronics, Material Science and Engineering, Nanotechnology, Other
Professor: NCN Faculty
Preferred major(s): Electrical, Computer, Materials, or Mechanical Engineering; Chemistry; Physics; Computer Science
Desired experience:   Serious interest in and enjoyment of programming; programming skills in any language. Physics coursework.
Number of positions: 16-20

NCN is looking for a diverse group of enthusiastic and qualified students with a strong background in engineering, chemistry or physics who can also code in at least one language (such as C or MATLAB) to work on research projects that involve computational simulations. Selected students will typically work with a graduate student mentor and faculty advisor to create or improve a simulation tool that will be deployed on nanoHUB. To learn about this year’s research projects along with their preferred majors and requirements, please go to website noted below.

If you are interested in working on a nanoHUB project in SURF, you will need to follow the instructions below and be sure you talk about specific NCN projects directly on your SURF application, in the text box for projects that most interest you.

1) Carefully read the NCN project descriptions (website available below) and select which project(s) you are most interested in and qualified for. It pays to do a little homework to prepare your application.
2) Select the Network for Computational Nanotechnology (NCN) / nanoHUB as one of your top choices.
3) In the text box that asks about your “understanding of your role in a project that you have identified”, you may discuss up to three NCN projects that most interest you. For each NCN project, be sure to tell us why you are interested in the project and how you meet the required skill and coursework requirements.

Faculty advisors for summer 2017 include: Arezoo Ardekani, Peter Bermel, Ilias Bilionis, Marcial Gonzalez, Marisol Koslowski, Peilin Liao, Guang Lin, Lyudmila Slipchenko, Alejandro Strachan, Janelle Wharry, and Pablo Zavattieri. These faculty represent a wide range of departments: ECE, ME, Civil E, MSE, Nuclear E, Chemistry and Math, and projects may be multidisciplinary.

Examples of previous student work can be found here:https://nanohub.org/groups/ncnsurf.

 

Purdue AirSense: Creating a State-of-the-Art Air Pollution Monitoring Network for Purdue

Research categories:  Agricultural, Aerospace Engineering, Bioscience/Biomedical, Chemical, Civil and Construction, Computational/Mathematical, Computer Engineering and Computer Science, Educational Research/Social Science, Electronics, Environmental Science, Industrial Engineering, Innovative Technology/Design, Life Science, Material Science and Engineering, Mechanical Systems, Nanotechnology, Physical Science
School/Dept.: Civil Engineering
Professor: Brandon Boor
Preferred major(s): Any engineering, science or human health major.
Desired experience:   Motivation to learn about, and solve, environmental, climate, and human health issues facing our planet. Past experience: working in the lab, analytical chemistry, programming (Matlab, Python, Java, LabVIEW, HTML), electronics/circuits, sensors.
Number of positions: 1-2

Air pollution is the largest environmental health risk in the world and responsible for 7 million deaths each year. Poor air quality is a serious issue in rapidly growing megacities and inside the homes of nearly 3 billion people that rely on solid fuels for cooking and heating. Join our team and help create a new, multidisciplinary air quality monitoring network for Purdue - Purdue AirSense. You will have the opportunity to work with state-of-the-art air quality instrumentation and emerging sensor technologies to monitor O3, CO, NOx, and tiny airborne particulate matter across the campus. We are creating a central site to track these pollutants in real-time on the roof-top of Hampton Hall, as well as a website to stream the data to the entire Purdue community for free. 4-5 students will be recruited to work as a team on this project, which is led by Profs. Brandon Boor (CE) & Greg Michalski (EAPS).

 

Synthesis, Characterization, and Reactivity of Low-Valent Uranium Species

Research categories:  Chemical
School/Dept.: Department of Chemistry
Professor: Suzanne Bart
Preferred major(s): Chemistry
Desired experience:   General Chemistry and Organic Chemistry lab courses completed
Number of positions: 1

Understanding of the fundamental chemistry of transition metal alkyl species has contributed greatly to the advancement of pharmaceuticals, materials, and fine chemicals. Comparatively we know much less about the types of reactions of which the f-block elements, more specifically uranium, are capable. The principal investigator’s laboratory is working to understand the synthesis, characterization, and reactivity of reduced uranium complexes for small molecule activation. Our initial findings have led us to understand the great chemical potential of uranium(III) and uranium(IV) alkyls and taught us how to effectively work with this electron rich metal, avoiding decomposition and disproportionation observed by others. Future work, proposed here, explores the hypothesis that low-valent uranium alkyls are useful synthons for elusive uranium targets. Experiments will be carried out to 1) obtain a family of uranium(III) alkyls with a variety of ancillary ligands, 2) understand under what conditions uranium can undergo two electron processes, similar to late transition metals, including reductive elimination, oxidative addition, and migratory insertion, 3) explore the utility of uranium alkyls for multiple bond formation. The work proposed here includes synthetic methods, spectroscopic analysis, and computational approaches to fully understand the reactivity of these compounds.

Although an underutilized element, uranium has many positive traits that make it suitable for metal mediated transformations. The principle investigator’s laboratory is studying how to control chemical reactivity at low- and mid-valent uranium centers in solution. These studies encompass understanding the stability and reactivity of organouranium species to determine their potential for new transformations. Efforts towards understanding how to make uranium perform two electron processes are also underway. Characterization of our uranium complexes through spectroscopic and computational methods will provide insight into uranium-element bonding. Uranium has been demonstrated to perform reactions unparalleled by transition metals, and there is no doubt that more exciting processes mediated by uranium will be uncovered.

 

The Role of Small Heat Shock Protein (HSP) in Postmortem Protein Degradation of Muscles

Research categories:  Agricultural, Life Science
School/Dept.: Animal Sciences
Professor: Brad Kim
Preferred major(s): Animal Sciences/Food Science/ABE/Biochemistry or closely related
Desired experience:   Basic chemistry/previous lab work experience
Number of positions: 1

Providing consistently high quality and wholesome meat products to consumers is crucial to the continued success of the US meat industry. The purpose of this research is to determine the role of small heat shock protein (HSP) in postmortem protein degradation of muscles. Anti-apoptotic functions of HSP have been well identified, but its potential impact on endogenous proteolytic enzyme activity is largely unknown. This study will determine the involvement of HSP in postmortem protein degradation of beef and/or pork muscles. Student will have hands-on experience by performing assays to observe and quantifying the presence of small heat shock proteins present in samples, and interpreting results. Student will assist graduate students in any way needed, especially as is relevant to studies in small heat shock proteins.

 

The Urban-Ag Divide: The role of social learning in water resource protection behaviors

Research categories:  Agricultural, Environmental Science, Other
School/Dept.: Forestry and Natural Resources
Professor: Linda Prokopy
Desired experience:   Personable, high attention to detail, willingness to work with diverse stakeholders, interest in water quality issues and environmental education, desire to work with the public and conduct research.
Number of positions: 1

In this project, we seek to test out a new watershed/water pollution mitigation education strategy. One of the things we repeatedly hear when we talk to farmers is that they’re not the only ones to blame for water quality issues so they shouldn’t be the only ones expected to change their behaviors. We’re wondering if this is limiting willingness to voluntarily adopt practices.

In response to this, we are experimenting with something we’re calling “reciprocal tours” where we take farmers out to see things that cities and urban dwellers are doing and we take urban dwellers out to see what farmers are doing to help mitigate water pollution. This summer, we will be conducting a pilot study of this approach in Tippecanoe County where both farmers and cities have adopted water quality mitigation practices.

We are seeking a student to coordinate demonstration tours in Lafayette, IN and the surrounding agricultural area. Coordination includes finding urban and farmer tour participants, coordinating transportation to and from tours, organizing focus group location and food, and working with cities, farmers, and staff from the Wabash River Enhancement Corporation to identify appropriate sites and develop speaking points and education material about various conservation practice. In addition, this student will help develop, administer, and analyze evaluation materials.

 

Thermodynamics of Coherent Structures near Phase Transitions

Research categories:  Computational/Mathematical, Material Science and Engineering, Physical Science
School/Dept.: Mechanical Engineering
Professor: Ivan Christov
Preferred major(s): Engineering, Physics or Mathematics (any subareas of each)
Desired experience:   Knowledge of programming in MATLAB and/or a MATLAB-like high-level language (such as python). Experience writing own computer code and analyzing the numerical output. Basic understanding of partial differential equations. Basic understanding of thermodynamics and classical physics.
Number of positions: 1

Many phenomena in physics, engineering and material science can be addressed by "simple" mathematical models capturing only the essential behavior. Coherent structures are common to all areas of science, from synchronized oscillations of fireflies to Jupiter's red spot. "Simple" (also called phenomenological) models of phase transitions (abrupt changes in system behavior) also exhibit coherent structures and self-organized behavior. When large numbers of coherent structures interact in the presence of noise and/or external driving forces, a thermodynamic limit can be taken, describing the complex system by a single nonlinear partial differential equation for the "field" of coherent structures.

This project is aimed at numerically confirming analytical results obtained recently about such systems. The SURF student will work with the faculty member to further develop simple numerical simulations of partial differential equations using standard software such a MATLAB or Python tools such as numpy and scipy. The SURF student will generate simulations spanning a large parameter space and of sufficient size and accuracy to compute long-time (thermodynamic) averages suitable for comparison to the theory. If successful, the theory-numerics comparison will yield an important journal publication.

More information: http://tmnt-lab.org

 

VACCINE-Visual Analytics for Command, Control, and Interoperability Environments

Research categories:  Computational/Mathematical, Computer Engineering and Computer Science, Innovative Technology/Design
School/Dept.: ECE
Professor: David Ebert
Preferred major(s): Computer Engineering, Computer Science, other Engineering majors with programming experience
Desired experience:   Programming experience in C++, others as described below
Number of positions:

We are currently searching for students with strong programming and math backgrounds to work on a variety of projects at the Visual Analytics branch (VACCINE) of the Department of Homeland Security Center of Excellence in Command, Control and Interoperability. Students will each be assigned individual projects focusing on developing novel data analysis and exploration techniques using interactive techniques. Students should be well versed in C++ upon entering the SURF program, and will be expected to learn skills in R, OpenGL, and/or a variety of other libraries over the course of the summer.

Ongoing project plans will include research that combines soil, weather and crop data from sensing technology to provide critical crop answers for California wine growers and producers, programming for criminal incident report analysis, incorporating local statistics into volume rendering on the GPGPU, healthcare data analysis, and analyzing customizable topics and anomalies that occur in real-time via social media networks Twitter and Facebook. If you have CUDA programming experience or an intense interest to learn it, please indicate this on your application form. We also plan to have a project that will assist first responders in accident extrication procedures.

The ideal candidate will have good working knowledge of modern web development technologies, including client-side technologies such as HTML5, SVG, JavaScript, AJAX, and DOM, as well as server side components such as PHP, Tomcat, MySQL, etc. Experience in visualization or computer graphics is a plus. The project will likely be based on the D3 (http://d3js.org/) web-based visualization toolkit; prior experience using D3 or other visualization APIs for the web is particularly welcome.

Of the past undergraduate students that have worked in the center, five of their research projects have led to joint publications in our laboratory and at many of our areas' top venues. Sample projects include visual analytics for law enforcement data, health care data and sports data. Students will be assigned individual projects based on the center's needs which will be determined at a later date. To learn more about the VACCINE Center go to the website provided below.

More information: http://visualanalytics-cci.org

 

Wideband GNSS Reflectometry Instrument Design and Signal Processing for Airborne Remote Sensing of Ocean Winds.

Research categories:  Aerospace Engineering, Computer Engineering and Computer Science, Electronics, Environmental Science, Physical Science, Other
School/Dept.: AAE
Professor: James Garrison
Preferred major(s): Electrical Engineering, Physics
Desired experience:   Linear Systems, Signal processing, computer programming (C, Python, MATLAB). Some experience building computers or electronics is desirable. A basic understanding of electromagnetism is also desirable.
Number of positions: 1

This research project will involve the assembly and test a remote sensing instrument to make measurements of the ocean wind field from the NOAA “Hurricane Hunter” aircraft. The fundamental operating principle of this new instrument is “reflectometry”, which is based upon observing changes in the structure of a radio frequency signal reflected from the ocean surface. These changes are related to the air-sea interaction process on the ocean surface and can be used to estimate the wind speed through empirical models. Transmissions from the Global Navigation Satellite System (GNSS), (e.g. GPS, Galileo, Glonass or Compass) are ideal signal sources for reflectometry, due to their use of a “pseudorandom noise” (RRN) code.

NASA will be launching the CYGNSS satellite constellation in November to globally monitor the tropical ocean and observe the formation of severe storms. CYGNSS will use a first generation GNSS-R instrument. This summer research project will produce a next-generation prototype taking advantage of the wider bandwidth of the Galileo E5 signal (~90 MHz vs. 2 MHz) for higher resolution measurements of the reflected signal.

In addition to hardware assembly and testing in the laboratory, this research project will also require the development of signal processing algorithms to extract essential information from the scattered signal. A “software defined radio” approach will be used, in which the full spectrum of the reflected signal is recorded and post-processed using software to implement the complete signal processing chain.

The goal of this summer research project is to deliver a working instrument, post processing software, and documentation to NOAA for flight on the hurricane aircraft during the 2017 hurricane season. There are two objectives of this experiment. The first is to demonstrate the feasibility of wideband E5 reflectometry measurements. The second objective is to collect the highest quality GNSS reflectometry data, under a wide variety of extreme meteorological conditions, to improve the empirical models that will be used for processing CYGNSS data and generating hurricane forecasts.

Students interested in this project should have good programming skills and some experience with C, Python and MATLAB. They should also have a strong background in basic signal processing. Experience with building computers or other electronic equipment will also be an advantage.

More information: www.linkedin.com/in/gvector