2022 Research Projects

Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:


Engineering the Built Environment (14)

 

AAMP UP- Sample Heating using Infrared Laser and Optics 

Description:
This project is part of the AAMP-UP '22 program, which focuses on energetic material research.
AAMP-UP is separate but highly partnered with SURF.

The project is run by Dr. Wayne Chen and his team. Mechanical properties are important metrics that provide insight for different engineering applications ranging from chemical bonding type on an atomic scale to macroscale design applications. However, research shows that mechanical properties can change as a function of strain rate (impact velocity) and temperature. Therefore, it is necessary to test materials and gather properties while replicating the environment they will endure in application to best inform researchers and engineers in the material design process. A Kolsky bar apparatus is used to perform mechanical testing on materials at high strain rates. This experimental technique has been used for the last ~50 years and has resulted in many materials characterization papers. Missing from the literature is temperature dependence of mechanical properties at high strain rates. We would like a student interested in lasers and optics to design and build an infrared laser device that will evenly heat a polymer composite sample to a specified temperature. The device must attach to the Kolsky bar apparatus and be both safe and efficient. This will allow for coupled temperature and strain rate mechanical experiments and extrapolation of the temperature effects of different materials.

An understanding of laser and optics would be beneficial but is not required.
Research categories:
Composite Materials and Alloys, Engineering the Built Environment, Fabrication and Robotics, Material Modeling and Simulation, Material Processing and Characterization, Other
Preferred major(s):
  • No Major Restriction
Desired experience:
Must be a U.S. citizen, national, or permanent resident of the United States. Must have completed at least one academic semester of full-time study at associate's or bachelor's degree level from an accredited college or university.
School/Dept.:
Aeronautics and Astronautics & Materials Engineering
Professor:
Wayne Chen

More information: https://engineering.purdue.edu/AAE/people/ptProfile?resource_id=1261

 

AAMP-UP: Additive Manufacturing 

Description:
This research project seeks to additively manufacture (3D print) highly viscous materials using a novel 3D-printing method: Vibration Assisted Printing (VAP). This technique uses high frequency vibrations concentrated at the tip of the printing nozzle to enable flow of viscous materials at low pressures and temperatures. VAP has the potential to create next-generation munitions with more precision, customizability, and safety than traditional additive manufacturing methods. The objective of this project is to design formulations which are capable of being vibration-assisted printed, maintain energetic performance, and retain desirable mechanical properties after printing. The REU student would be mentored by graduate students and work within a team to design experiments, perform experiments, analyze data, and disseminate the results. The REU student will have the opportunity to present the findings in regular meetings, poster sessions, formal presentations, and papers.
Research categories:
Chemical Unit Operations, Composite Materials and Alloys, Energy and Environment, Engineering the Built Environment, Fabrication and Robotics, Material Modeling and Simulation, Other
Preferred major(s):
  • No Major Restriction
Desired experience:
U.S. Citizenship Required Must have completed 1 semester of undergraduate courses
School/Dept.:
Mechanical Engineering
Professor:
Jeff Rhoads

More information: https://engineering.purdue.edu/ME/People/ptProfile?resource_id=34218

 

Decisions for handling contaminated personal effects and plumbing after drinking water contamination 

Description:
Chemical spills and backflow incidents are common threats to drinking water distribution and plumbing systems. Sometimes free product and drinking water with dissolved contaminants can travel through this infrastructure and reach building faucets. When this occurs health officials, system owners, and infrastructure owners rapidly seek information about whether individual constituents became sequestered in certain parts of the systems and how best to remove them. Plastics are an important concern because many are easily permeated by organic compounds which prompts them to leach chemicals into clean water making it unsafe.

In response to drinking water contamination incidents over the past 20 years and requests from health departments and households affected, this project will examine the fate of fuel chemicals in contact with plumbing materials (i.e., pipes, gaskets) and plastic personal effect materials (i.e., baby bottles, plates, cups, etc.). Diesel, gasoline and crude oil are being considered. The student will conduct the contamination experiments, collect water samples and analyze them using state-of-the-art instrumentation. The student will analyze, interpret, and report the information with advisement of one graduate research assistant and two faculty who respond to these types of water contamination incidents.

Other questions that may be explored include the chlorination of the fuel components and formation of disinfectant byproducts, mechanical integrity impacts on the plastic materials, chemical transformations of the leached products. This work directly supports emergency response and recovery activities of the Center for Plumbing Safety.
Research categories:
Chemical Unit Operations, Chemical Catalysis and Synthesis, Engineering the Built Environment, Environmental Characterization, Other
Preferred major(s):
  • Environmental and Ecological Engineering
  • Chemistry
  • Chemical Engineering
  • Civil Engineering
  • Materials Engineering
  • Materials Science
  • Plastics Engineering
  • Agricultural Engineering
  • Pharmacy
  • Military Science
  • Public Health
  • Environmental Health Sciences
  • Food Science
Desired experience:
Strong internal motivation to learn Basic understanding of chemistry
School/Dept.:
CE & EEE
Professor:
Andrew Whelton

More information: www.PlumbingSafety.org

 

Development of Automated Load-Based Testing Apparatus for Air Conditioners & Heat Pumps Performance Evaluation 

Description:
Project Description: The energy demands for space conditioning is continuously increasing with population growth, rising temperatures, and improving standards of living. To counteract the effect of growing air-conditioners and heat-pumps demand on overall energy consumption, improving the energy efficiency of systems sold in the market is crucial. One of the effective and tested approaches for this has been to set energy efficiency benchmarks based on the minimum energy performance standards (MEPS) which drive technological innovation. For air-conditioners and heat pumps, a testing and rating procedure forms the technical basis for these energy efficiency standards to estimate equipment seasonal performance. However, with current rating standards for residential heat pumps, significant dissimilarities have been observed between the equipment rated performance and the equipment's actual operational performance in field applications. Load-based testing is evolving as an alternative approach for obtaining equipment performance data that captures the effects of dynamic interactions between a heat pump or air conditioner, its integrated controls, and a prototypical building that it serves. Current load-based testing requires the use of psychometric chambers to vary ambient temperatures and building loads which is time-consuming and expensive, particularly for residential split systems when different combinations of indoor and outdoor units need to be tested. Thus, there is a need for a low-cost, automated, load-based method of test that doesn’t require psychrometric chambers and where multiple units could be tested in a single large test room similar to a life-test facility. In this project, we are working on the development of a low-cost and automated testing apparatus and methodology for direct expansion air conditioners and heat pumps. The student who joins this project will have the opportunity to contribute to important experimental work will learn about air-conditioners working and their testing approach, thermodynamics, and heat transfer applicable to thermal systems, and will also learn about the test facility development process.

Final Deliverables: The student will work closely with the graduate student mentor on test facility development and experiments related to the performance evaluation of heat-pumps and air-conditioners based on the load-based testing methodology. The student will also assist in analyzing the experimental data. Students will partake in weekly literature reading and discussion, small group meetings, and will keep a log of their weekly progress. They will present their updates at weekly meetings and will present a talk or poster at the end of the summer. Students will end the summer with a greater understanding of the energy challenges in space conditioning and will develop a broad range of technical skills pertinent to the experimentation and performance evaluation of residential air-conditioning and heat-pumping systems.
Research categories:
Energy and Environment, Engineering the Built Environment, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Civil Engineering
Desired experience:
Applicants should have a general interest in energy and sustainability. Should also have a strong background/interest in thermodynamics and heat transfer. Applicants with experience in some (not all) of the following are preferred: LabVIEW, Python, Engineering Equation Solver, MATLAB, 3D-CAD Software. 2nd semester Sophomores, Juniors, and 1st semester Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
Travis Horton
 

Developmental, Behavioral & Environmental Determinants of Infant Dust Ingestion 

Description:
Our project is funded by the U.S. Environmental Protection Agency (EPA) and involves an interdisciplinary collaboration between engineers, chemists, and psychologists at Purdue University and New York University (NYU). We will elucidate determinants of indoor dust ingestion in 6- to 24-month-old infants (age range for major postural and locomotor milestones). Specific objectives are to test: (1) whether the frequency and characteristics of indoor dust and non-dust mouthing events change with age and motor development stage for different micro-environments; (2) how home characteristics and demographic factors affect indoor dust mass loading and dust toxicant concentration; (3) how dust transfer between surfaces is influenced by dust properties, surface features, and contact dynamics; and (4) contributions of developmental, behavioral, and socio-environmental factors to dust and toxicant-resolved dust ingestion rates. In addition, the project will (5) create a shared corpus of video, dust, toxicant, and ingestion rate data to increase scientific transparency and speed progress through data reuse by the broader exposure science community.

Our transdisciplinary work will involve: (1) parent report questionnaires and detailed video coding of home observations of infant mouthing and hand-to-floor/object behaviors; (2) physical and chemical analyses of indoor dust collected through home visits and a citizen-science campaign; (3) surface-to-surface dust transfer experiments with a robotic platform; (4) dust mass balance modeling to determine distributions in and determinants of dust and toxicant-resolved dust ingestion rates; and (5) open sharing of curated research videos and processed data in the Databrary digital library and a public website with geographic and behavioral information for participating families.

The project will provide improved estimates of indoor dust ingestion rates in pre-sitting to independently walking infants and characterize inter-individual variability based on infant age, developmental stage, home environment, and parent behaviors. Dust transport experiments and modeling will provide new mechanistic insights into the factors that affect the migration of dust from the floor to mouthed objects to an infant’s mouth. The shared corpus will enable data reuse to inform future research on how dust ingestion contributes to infants’ total exposure to environmental toxicants.

U.S. EPA project overview: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/11194
Research categories:
Biological Characterization and Imaging, Ecology and Sustainability, Energy and Environment, Engineering the Built Environment, Environmental Characterization, Human Factors
Preferred major(s):
  • No Major Restriction
Desired experience:
We are seeking students passionate about studying environmental contaminants and infant exposure to chemicals in the indoor environment. Preferred skills: experience with MATLAB, Python, or R. Coursework: environmental science and chemistry, microbiology, physics, thermodynamics, heat/mass transfer, fluid mechanics, developmental psychology.
School/Dept.:
Lyles School of Civil Engineering
Professor:
Brandon Boor

More information: www.brandonboor.com

 

Evaluation of a Prototype Membrane Energy Exchanger for Efficient Buildings 

Description:
Buildings are the largest source of energy consumption in the U.S., constituting roughly 48% of our primary energy consumption, and air conditioning is one of the largest uses of energy within buildings. As global temperatures rise from global warming, populations grow, and greater emphasis is put on indoor air quality and comfort, cooling energy demand will grow too. The long-standing conventional technologies we rely on for space cooling are inherently inefficient in warm, humid climates where a large portion of the cooling energy goes to the condensation dehumidification process instead of air cooling. Thus, there is a great need for innovative, disruptive technological development that can challenge the way we’ve provided space cooling for decades. In this project, we are developing a novel technology that mechanically separates water vapor out of air using water vapor selective membranes, which is much more efficient than condensing water out of air. Additionally, we are exploring innovative heat and mass transport phenomena using novel materials. The student who joins this project will have the opportunity to contribute to important experimental work, will learn about energy use and the thermodynamics and heat transfer in buildings, and will learn about material development, too.

The student will work closely with the graduate student mentor on experiments related to porous membrane fabrication and characterization along with the testing of the novel membrane energy exchanger’s performance (heat transfer and dehumidification properties). The student will also assist in validating thermodynamic models using the experimental data. Students will partake in weekly literature reading and discussion small group meetings and will keep a log of their weekly progress. They will present their updates at weekly meetings and will present a talk or poster at the end of the summer. Students will end the summer with a greater understanding of the energy challenges in the building sphere and will develop a broad range of scientific skills pertinent to the design and evaluation of new technologies.
Research categories:
Energy and Environment, Engineering the Built Environment, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
Desired experience:
Applicants should have a general interest in energy and sustainability. Should also have a strong background/interest in thermodynamics and heat transfer. Applicants with experience in some (not all) of the following are preferred: LabVIEW, Python (Jupyter, Google Colab, etc.) Engineering Equation Solver, MATLAB, 3D-CAD Software, prototype design/manufacturing, and Adobe Illustrator. 2nd semester Sophomores, Juniors, and 1st semester Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
James Braun

More information: https://engineering.purdue.edu/CHPB

 

Identifying and reducing health and environmental impacts of plastic used to repair buried pipes 

Description:
Drinking water and sewer pipes are decaying across the nation, and inexpensive methods for repairing these assets are being increasingly embraced. One method called cured-in-place-pipe (CIPP) involves workers chemically manufacturing a new plastic pipe inside an existing damaged pipe. This is the least expensive pipe repair method and, as such, is preferred by utilities and municipalities. The practice is often conducted outdoors and industry ‘best’ practice involves discharging the plastic manufacturing waste into the environment and nearby pipelines. Under some conditions, this waste finds its way into public areas and buildings prompted illnesses and environmental damage. Another consequence can be direct leaching of unreacted chemicals into water or volatilization of chemicals from the new plastic into air.

This project will involve the student working with a graduate student as well as leading experts on plastics manufacturing, chemistry, public health, civil/environmental engineering, and communications. The student will learn plastic manufacturing methods, environmental sampling and analysis methods, and participate in the process of reducing human health and environmental risks of the practice. To complete this work, the student will learn and apply infrastructure, environmental, and public health principles.
Research categories:
Composite Materials and Alloys, Energy and Environment, Engineering the Built Environment, Environmental Characterization, Other
Preferred major(s):
  • Chemical Engineering
  • Environmental and Ecological Engineering
  • Civil Engineering
  • Public Health
  • Chemistry
  • Environmental Health Sciences
Desired experience:
Strong interest in learning and applying scientific methods and techniques to help solve a pressing day problem; Basic understand of chemistry; General lab experience desirable as the student will help manufacture plastics in the lab using chemical formulations
School/Dept.:
CE & EEE
Professor:
Andrew Whelton

More information: More information about the project: https://www.nsf.gov/awardsearch/showAward?AWD_ID=2129166&HistoricalAwards=false; More information about the topic: www.CIPPSafety.org

 

Leveraging the Power of Social Networks to Eradicate Epidemics 

Description:
Since the popularization of handheld communication devices and social media applications, opinion dynamics and social networks have played a more critical role in politics, economics, and public health issues. In particular, opinion polarization on vaccination has tolled thousands of lives in the recent pandemic. Consider the following question: "If you could only convince three nodes in a social network to get vaccinated, which nodes should you choose?"

This project will guide students to answer this resource allocation problem through analyzing the spread transmission network and the dynamic opinion network. The project will be composed of four parts:
1. Constructing epidemic spread simulators.
2. Designing a control strategy for epidemic mitigation.
3. Developing mathematical proofs which guarantee the algorithm's performance.
4. Applying the strategy to real networks generated from online COVID data as a case study.
Students who participated in the project will learn the basics of the epidemic modeling paradigm, network science, control theory, and Python/MATLAB programming skills.
Research categories:
Big Data/Machine Learning, Engineering the Built Environment, Learning and Evaluation, Medical Science and Technology
Preferred major(s):
  • No Major Restriction
School/Dept.:
Elmore Family School of Electrical Engineering
Professor:
Philip E. Paré
 

Real-Time Measurements of Volatile Chemicals in Buildings with Proton Transfer Reaction Mass Spectrometry 

Description:
The objective of this project is to utilize state-of-the-art proton transfer reaction mass spectrometry (PTR-MS) to evaluate emissions and exposures of volatile chemicals in buildings. My group is investigating volatile chemical emissions from consumer and personal care products, disinfectants and cleaning agents, and building and construction materials. You will assist graduate students with full-scale experiments with our PTR-MS in our new Purdue zEDGE Tiny House and process and analyze indoor air data in MATLAB.
Research categories:
Big Data/Machine Learning, Ecology and Sustainability, Energy and Environment, Engineering the Built Environment, Environmental Characterization, Human Factors, Internet of Things
Preferred major(s):
  • No Major Restriction
Desired experience:
Preferred skills: experience with MATLAB, Python, or R. Coursework: environmental science and chemistry, physics, thermodynamics, heat/mass transfer, and fluid mechanics.
School/Dept.:
Lyles School of Civil Engineering
Professor:
Nusrat Jung

More information: https://www.purdue.edu/newsroom/stories/2020/Stories%20at%20Purdue/new-purdue-lab-provides-tiny-home-for-sustainability-education.html

 

Renewable energy-powered water technologies 

Description:
Water and energy are tightly linked resources that must both become renewable for a successful future. However, today, water and energy resources are often in conflict with one another, especially related to impacts on electric grids. Further, advances in nanotechnology, material science and artificial intelligence allow for new avenues to improve the widespread implementation of desalination and water purification technology. The team is pursuing multiple projects that aim to explore solar and wind-powered desalination, nanofabricated membranes, light-driven reactions, artificial intelligence control algorithms, and thermodynamic optimization of energy systems. The student will be responsible for fabricating membranes, building hydraulic systems, modeling thermal fluid phenomenon, analyzing data, or implementing control strategies in novel system configurations. More information here: www.warsinger.com
Research categories:
Big Data/Machine Learning, Chemical Catalysis and Synthesis, Ecology and Sustainability, Energy and Environment, Engineering the Built Environment, Environmental Characterization, Fluid Modelling and Simulation, Material Modeling and Simulation, Nanotechnology, Thermal Technology
Preferred major(s):
  • Mechanical Engineering
  • Civil Engineering
  • Environmental and Ecological Engineering
  • Chemistry
  • Chemical Engineering
  • Materials Engineering
Desired experience:
Applicants should have an interest in thermodynamics, water treatment, and sustainability. Applicants with experience in some (not all) of the following are preferred: experimental design and prototyping, manufacturing, Python, LabView, EES, MATLAB, 3D CAD Software, & Adobe Illustrator. Rising Juniors and Seniors are preferred.
School/Dept.:
Mechanical Engineering
Professor:
David Warsinger

More information: www.warsinger.com

 

Structural Engineering for Blast Resistant Design 

Description:
Today’s structures are highly engineered buildings and bridges capable of carrying everyday and extreme loads. In this project, students will get to work on understanding blast engineering design with a special focus on building materials like concrete and steel. Undergraduate researchers will work day-to-day alongside graduate students and permanent sta! to create test plans, fabricate test specimens, and test large-scale structures to failure. Students will leave this summer with a greater understanding of engineering principles including structural dynamics, impact and blast loading, and composite behavior.
Research categories:
Composite Materials and Alloys, Engineering the Built Environment, Fabrication and Robotics, Material Modeling and Simulation
Preferred major(s):
  • No Major Restriction
  • Civil Engineering
  • Mechanical Engineering
  • Mechanical Engineering Technology
  • Aeronautical and Astronautical Engineering
  • Aeronautical Engineering Technology
  • Construction Engineering
  • Construction Management Technology
  • Engineering (First Year)
  • Materials Engineering
Desired experience:
Willing to work in a large-scale structural testing facility which may include some manual labor.
School/Dept.:
Civil Engineering
Professor:
Amit Varma

More information: https://engineering.purdue.edu/~ahvarma/

 

Sustainable Drinking Water Filtration Systems 

Description:
Clean drinking water is a universal right, but on the global scale, we still struggle to provide water free of contaminants to everyone. By developing more efficient systems to purify water, we can expand the availability of clean drinking water and reduce the environmental impact of treatment operations. This project will explore the operation of reverse osmosis membranes as a means of efficiently purifying water.

Reverse osmosis membranes are traditionally an expensive and energy intensive drinking water treatment method, and the membranes can suffer from biofouling that reduce the life of the membrane. Operating reverse osmosis membranes intermittently has profound implications for energy savings, and is still an effective form of water treatment. It is unclear if these systems will also be subject to biofouling, or growth of organisms on and after the filter. In this project, the student will utilize real-time microbiology tools and community sequencing to measure and characterize the microbes able to survive fluctuating salinity levels. It is hypothesized that the fluctuations in salinity will prevent significant growth of any microorganisms, thus extending the life and optimizing the operation of reverse osmosis membranes.
Research categories:
Biological Characterization and Imaging, Ecology and Sustainability, Energy and Environment, Engineering the Built Environment
Preferred major(s):
  • No Major Restriction
Desired experience:
Biology or engineering background. Lab skills in drinking water characterization, microbiology (e.g. culture plating), or mechanical engineering are desired but not required.
School/Dept.:
Environmental and Ecological Engineering
Professor:
Caitlin Proctor
 

Understanding Nanosilica in Concrete Science for Low Carbon Materials  

Description:
The project’s goal is to improve the properties of concrete by the incorporation of nano silica. The performance of the concrete such as strength and durability will be evaluated. In this project, the student will be trained to conduct the related experiments and learn how to analyze the data. Undergraduate student works will include the concrete preparation, scanning electron microscope (SEM), pore structure evaluation, and data analysis.
Research categories:
Energy and Environment, Engineering the Built Environment
Preferred major(s):
  • No Major Restriction
School/Dept.:
civil engineering
Professor:
Luna Lu

More information: https://engineering.purdue.edu/SMARTLab

 

Using plastic microspheres to increase freezing-thaw resistance of construction materials  

Description:
Project description: Freezing thaw is one of the major damage sources of construction materials. Traditional methods use air-entrainment admixtures to increase the freeing thaw resistance but cause other issues such as strength decrease. This project will explore to use micrometer scale plastic microspheres in construction materials to increase the freezing thaw resistance while maintain the service properties. Student will help graduate students with various research and experimental work, including but not limited to, material preparation, polishing, and testing. The undergraduate student will also have an opportunity to learn the essential skillsets such experiments design, data analysis and project presentation etc.
Research categories:
Engineering the Built Environment, Material Processing and Characterization
Preferred major(s):
  • No Major Restriction
School/Dept.:
civil engineering
Professor:
Luna Lu

More information: https://engineering.purdue.edu/SMARTLab