2021 Research Projects
Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the 2021 Research Symposium Abstracts (PDF) and search the past SURF projects.
This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.
You can browse all the projects on the list or view only projects in the following categories:
Medical Science and Technology (8)
4D Printer Project
The project's goal is to use a Hyrel 3D printer to print out highly complex electronic circuits without any human interaction. To show the complexity of our printing method, our final print job will be a human neuron in the form of a computer chip. Undergraduate student goals will include fixing the many problems that come along the way, such as improving on the mechanics of the current printer, updating or adding a new software for printing, changing the cartridge material used, etc.
Adhesives at the Beach
The oceans are home to a diverse collection of animals producing intriguing materials. Mussels, barnacles, oysters, starfish, and kelp are examples of the organisms generating adhesive matrices for affixing themselves to the sea floor. Our laboratory is characterizing these biological materials, designing synthetic polymer mimics, and developing applications. Characterization efforts include experiments with live animals, extracted proteins, and peptide models. Synthetic mimics of these bioadhesives begin with the chemistry learned from characterization studies and incorporate the findings into bulk polymers. For example, we are mimicking the cross-linking of DOPA-containing adhesive proteins by placing monomers with pendant catechols into various polymer backbones. Adhesion strengths of these new polymers can rival that of the cyanoacrylate “super glues.” Underwater bonding is also appreciable. Future efforts are planned in two different areas: A) Using biobased and biomimetic adhesives as the basis for making new plastic materials. This project will be more in the realm of materials engineering. B) Developing gel-based adhesives for wound closure. Work here will involve some aspects of biomedical engineering.
More information: http://www.chem.purdue.edu/wilker/
Development of an anti-deterrent formulation against opioid abuse
Prescription analgesics such as opioids are an indispensable resource for managing pain. While these drugs may provide relief from the discomfort that occurs after a medical procedure, opioids are highly addictive. If taken as prescribed, the overall risk to the patient’s health is minimal. However, some addicts alter the method of ingestion in order to feel the effects as quickly as possible. These alternative ingestion strategies result in a rapid and dangerous increase in the concentration of the drug in the blood that can lead to death. In fact, overdose deaths caused by prescription drug abuse now exceed the total number of deaths caused by heroin or cocaine combined. To help minimize the risk of overdose, we are developing an advanced pill formulation designed to deter addicts from using alternative ingestion strategies.
Efficient and renewable water treatment
Water and energy are tightly linked resources that must both become renewable for a successful future. However, today, water and energy resources are often in conflict with one another, especially related to impacts on electric grids. Further, advances in material science and artificial intelligence allow for new avenues to improve the widespread implementation of desalination and water purification technology. This project aims to explore nanofabricated membranes, artificial intelligence control algorithms, and thermodynamically optimized system designs. The student will be responsible for fabricating membranes, building hydraulic systems, modeling thermal fluid phenomenon, analyzing data, or implementing control strategies in novel system configurations.
More information: www.warsinger.com
Human Factors: Enhancing Performance of Nurses and Surgeons
High physical and cognitive workload among surgeons and nurses are becoming more common. The purpose of this project is to examine the contributors to these and develop technology to understand and enhance their performance.
The SURF student will participate in data collection in the operating room at Indiana University School of Medicine, data analysis and interpretation, and write his/her results for a journal publication. The student will regularly communicate his/her progress and results with faculty, graduate mentors, and surgeon collaborators.
More information: https://engineering.purdue.edu/YuGroup
Mass spectrometry of biomolecules and nanoclusters
We are using mass spectrometry to study the localization of lipids, drugs, and proteins in biological tissues and to prepare novel functional interfaces using well-defined polyatomic ions. The student will work with a graduate student mentor to either perform nanocluster synthesis and characterization using mass spectrometry and electrochemical measurements or to develop new analytical approaches for quantitative analysis of biomolecules in biological samples. In both projects, the student will be trained to operate state-of-the-art mass spectrometers and perform independent data acquisition and analysis. The student will also work with the scientific literature to obtain a broader understanding of the field.
More information: https://www.chem.purdue.edu/jlaskin/
Nanostructural Evaluation of Human Bone Under Applied Loading
Student will design a test method for collecting small angle x-ray scattering data for bone specimen under in-situ loading conditions. Test parameters will be optimized for human bone and other associated materials. Data will be analyzed to determine extent of internal damage related to applied stress/strain conditions.
Neural recording and stimulation using a wireless single-chip system
In this project, we aim to implement an implant that can record and stimulate neural activities of a live mouse brain. We will take advantage of wireless powering and wireless data transfer to miniaturize the neural implant, such that it does not require battery or wires. Students will help develop the Reader for testing and collecting data from in-vitro and in-vivo experiments.