

**Elmore Family School of Electrical** and Computer Engineering

# **Towards Ultra Low Latency Spiking Neural Networks for Vision** and Sequential Tasks Using Temporal Pruning Sayeed Shafayet Chowdhury, Kaushik Roy, Purdue University

# **BACKGROUND AND MOTIVATION**



# **EFFICIENCY IMPROVEMENTS**



> 5X reduction in spike-rate compared to prior SOTA > 25-33X higher energy efficiency compared to ANNs > 5-100X reduction in memory access cost of membrane potential compared to prior art

**Key Takeaway:** Temporal Pruning enables SNN inference with unit timestep providing ultra high efficiency. SNNs with inherent memory of membrane potential can enhance performance on RL tasks, demonstrating the suitability of **SNNs for sequential learning.** 

Can we do 1 timestep SNN? Spike-rate: **Ultra low** 

Direct pixel inputs with 1<sup>st</sup> layer of network as

sparsity

ANN vs T1 SNN compute energy

| Dataset  | α     |
|----------|-------|
| CIFAR10  | 33.0  |
| CIFAR100 | 29.24 |
| ImageNet | 24.61 |
| CIFAR10  | 16.32 |
| CIFAR100 | 15.35 |

# TRAINING WITH TEMPORAL PRUNING



Directly training with 1 timestep results in convergence failure due to spike vanishing at the deeper layers Divide and conquer approach-train an SNN with higher T and gradually reduce T till  $1 \Rightarrow$  'Temporal Pruning' At each pruning iteration, SNN trained previously with higher T is used as initialization; Leverage the temporal axis of SNNs for compression

## **REINFORCEMENT LEARNING**



RL requires processing of sequential inputs- SNNs are suitable candidates due to inherent memory of membrane potential 1.3X reward on Cartpole compared to ANN using membrane potential

October 23-27, 2022, Tel Aviv

Atari Pong inference with T=1 to 5, enhancement in reward with increase in T showing efficacy of recurrence of LIF neurons 5-7X higher energy efficiency compared to ANN-DQNs





(c) Atari Pong with SNN-DQN (T1) 0.35 Average spike rate=0.08 0.30 0.25 ل <u>د 0.20</u> ₩ 0.15 v 0.10 0.05 0.00 conv2 conv3 SNN(T5) conv1 Layer





# **COMPARISON WITH STATE-OF-THE-ART**

| Reference               | Dataset  | Accuracy<br>(%) | Timesteps |
|-------------------------|----------|-----------------|-----------|
| Sengupta <i>et al</i> . | CIFAR10  | 91.55           | 2500      |
| Wu <i>et al</i> .       | CIFAR10  | 50.7            | 30        |
| Rueckauer et al.        | CIFAR10  | 90.85           | 400       |
| Zheng <i>et al</i> .    | CIFAR10  | 93.16           | 6         |
| Rathi <i>et al</i> .    | CIFAR10  | 92.70           | 5         |
| This work               | CIFAR10  | 93.05           | 1         |
| Lu <i>et al</i> .       | CIFAR100 | 63.2            | 62        |
| Rathi <i>et al</i> .    | CIFAR100 | 69.67           | 5         |
| Park <i>et al</i> .     | CIFAR100 | 68.80           | 680       |
| This work               | CIFAR100 | 70.15           | 1         |
| Rathi <i>et al</i> .    | ImageNet | 69.00           | 5         |
| Zheng <i>et al</i> .    | ImageNet | 67.05           | 6         |
| Fang <i>et al</i> .     | ImageNet | 67.04           | 4         |
| This work               | ImageNet | 69.00           | 1         |

# ACKNOWLEDGMENTS

This work was supported in part by C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA



# **PROPOSED APPROACH AND RESULTS**

| CIFAR10<br>(top1 %) | CIFAR100<br>(top1 %)                                             | ImageNet                                                                                  |
|---------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                     |                                                                  |                                                                                           |
| 93.05               | 70.15                                                            | 69.00                                                                                     |
| 93.72               | 71.43                                                            | 69.00                                                                                     |
| 93.85               | 71.46                                                            | 69.01                                                                                     |
| 93.87               | 71.51                                                            | 69.03                                                                                     |
| 93.90               | 71.58                                                            | 69.05                                                                                     |
|                     | CIFAR10<br>(top1 %)<br>93.05<br>93.72<br>93.85<br>93.87<br>93.87 | CIFAR10<br>(top1 %)CIFAR100<br>(top1 %)93.0570.1593.7271.4393.8571.4693.8771.5193.9071.58 |

Hybrid training with sequential temporal pruning **Reduces SNN latency to** lowest possible limit **Comparable performance** to ANNs with iso-latency SOTA SNN performance on ImageNet with T=1

