Quantum simulation with driven-dissipative superconducting circuits Botao Du, Ramya Suresh, Ruichao Ma Department of Physics and Astronomy, Purdue University (www.ma-quantumlab.com)

Superconducting Circuits for Quantum Simulation

53 qubit 2D-array

Google Sycamore (2019)

lattice on hyperbolic surface

Kollár et.al, Nature (2019)

- Digital quantum simulation with NISQ devices
- Analog quantum simulation for lattice physics, waveguide QED, etc.

Synthetic quantum material in Circuits

> Advantages of SC circuits for quantum simulation:

- Long lifetime in superconducting cavities (milliseconds to seconds)
- Strong coherent interaction realized in circuit QED
- Flexibility in engineered dispersion, coupling, connectivity etc.

Great platform for studying many-body physics of synthetic quantum materials made of microwave photons

Drive-dissipative stabilization Mott-Insulator state

R. Ma et al., Nature 566, 51–57 (2019).

> On-site interaction of transmon qubits:

• Transmon qubit as an anharmonic oscillator provide effective on-site interaction U for microwave photons

> Different ways to engineer coupling:

- Direct Nearest-neighbor coupling of transmon qubits
- Coupling via shared waveguide

 Ω_{BG}

g

> Bath engineering

Ground |G>

Minev*, Nature* (2019)

Möttönen group (2020)

- Tunable coupling via virtual photon exchange path
- Dynamically tunable parametric coupling

- Precise, tunable control of coupling to dissipative environments.
- Driven-dissipative stablized quantum state/phase
- Intrinsic dissipation makes it natural to study open quantum systems

Extended Bose-Hubbard lattice

X. Zhang, E Kim et al., arXiv:2206.12803 E Kim, X. Zhang et al., *Nature* (2019).

P.-O. Guimond et.al,

npj quantum information (2019)

 $\rightarrow \frac{1}{|001\rangle}$

Yan, Fei, et al. PRA 10.5 (2018): 054062.

> Start from tunable coupler:

Lossy Resonator	
Dubit and	If $\omega_{mod} = \omega_r - \omega_q $ photon loss in α
De g	If $\omega_{mod} = \omega_r + \omega_q $
$ \omega_{q} - \omega_{r} >> g$	photon gain in a

