FEDERATED QUANVOLUTIONAL NEURAL NETWORK: A NEW
PARADIGM FOR COLLABORATIVE LEARNING
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ABSTRACT

In recent years, the concept of federated machine learning has been actively driven by scientists to ease

the privacy concerns of data owners. It is a realistic goal to study the advanced computing ecosys- Abdomen €T
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identification of chest related diseases collaboratively in healthcare sector
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Figure 4: In real-world distribution with 20 clients, it

The concept of federated machine learning was has been investigated that FedQCNN is not able to clas-

MedNIST Non-IID1 dataset (97%)

Figure 3: (a-b) shows the performance of FedQCNN

introduced by Goog}e in 2017 [1]. In. this work, Fed ClE|B QCNN ar.ld FedCQNN on Non-1ID d ataset, which is dis- sify chest CT class after 100 communication rounds with
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FEEEEEEEE S fEEEEEEEES NISQ devices and preserving privacy.

* A server update step. the central server then
averages the local model parameters to up-
date its global model by employing a feder-
ated averaging algorithm and sends the new
set of parameters to all k clients for the next
communication round [3].

Figure 2: Non-identically independently distributed
(Non-IID) dataset among 10 clients (in which each client
should have samples from at least three classes) and
real-world distribution (in which each client can have
samples from any number of classes)
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