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Figure 2. Relationship of research questions to methodology.

- Engineers involved have different specializations.
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Figure 1. High-level overview of a DL model development and application life cycle.
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1. How do defects manifest across the reengineering process?

Memory Exhaustion 40%

B Training Data Quality

30% m Corrupt Data
Oth
20% °
- Loss function
10%

Numerical Instability

2. What type of defects are more frequent?

® Bad Performance (lower

speed)
Incorrect Functionality

Percentage of defect counts

3. What are the impacts of defects?

® Insufficient/incorrect

Percentage of defect counts

4. What are the root causes of defects? Environment Training Data pipeline Modeling "2 Performance {lower 0% AP bugs other
. - gr;'gl;r:acv) Environment Training Data pipeline Modeling 4 Laver properties
. o Deep learning stages
5. What are the challenges and practices: Deep learning stages « Network structure
Figure 5. Defect impacts by DL stage. Across most stages, the most Figure 6. Root causes by DL stage. In the Data Pipeline, data preprocessing, corrupt data
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