SPIKING NEURAL NETWORKS (SNNS) WITH IMPROVED INHERENT RECURRENCE DYNAMICS FOR SEQUENTIAL LEARNING

Wachirawit Ponghiran and Kaushik Roy, Purdue University, wponghir@purdue.edu

MOTIVATIONS

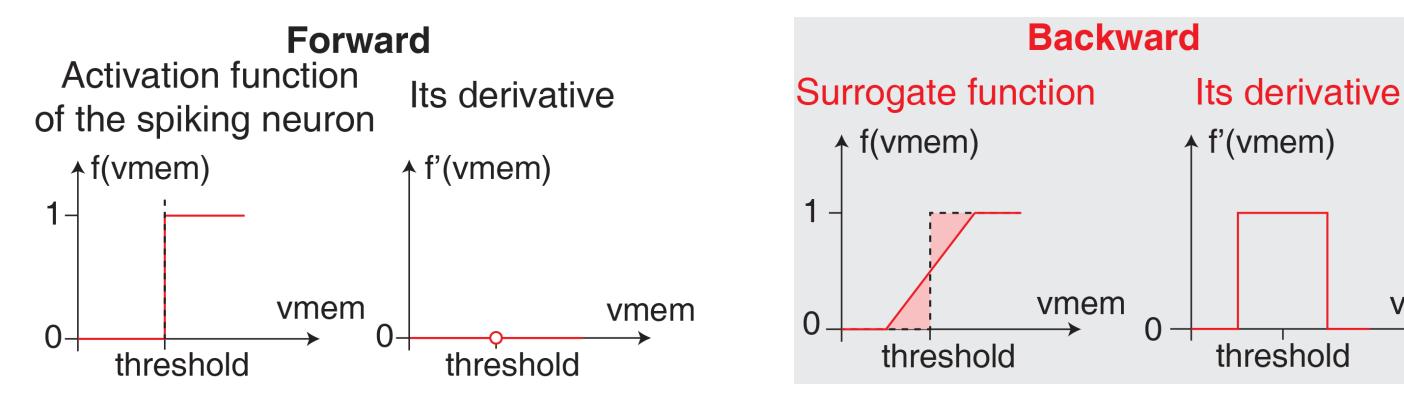
- SNNs have an inherent recurrence/internal states like RNNs \rightarrow RNNs alternative for low-power sequential learning applications

> Representative works do not demonstrate the usefulness of the inherent recurrence (Diehl et al. 2015; Rueckauer et al. 2017; Sengupta et al. 2019)

- Cramer et al. (2020) has successfully trained SNN for classifying digits from spoken words

GRADIENT MISMATCH AND THE PROPOSED TRAINING

- Use of surrogate gradient leads to noisy gradient updates \rightarrow Affect the model's learning performance



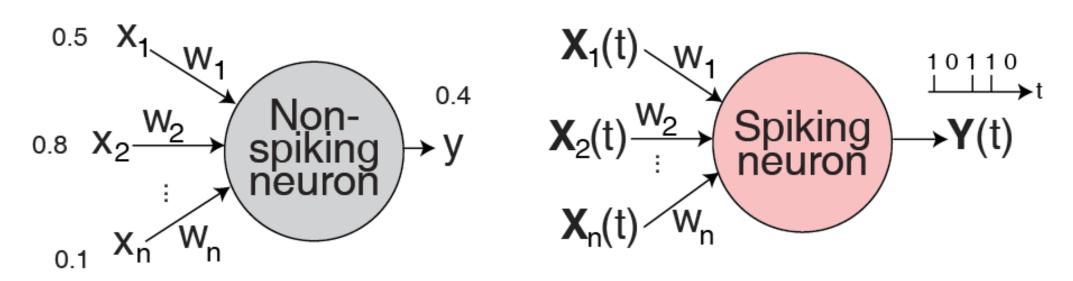
However, apart from this, SNNs have not been applied to sequential learning applications due to the difficulty in training

SNNS DYNAMICS AND VANISHING GRADIENT PROBLEM

- Spiking neurons communicate asynchronously with {0, 1} to mimic spiking activity \rightarrow Potential energy/power saving on an eventdriven hardware

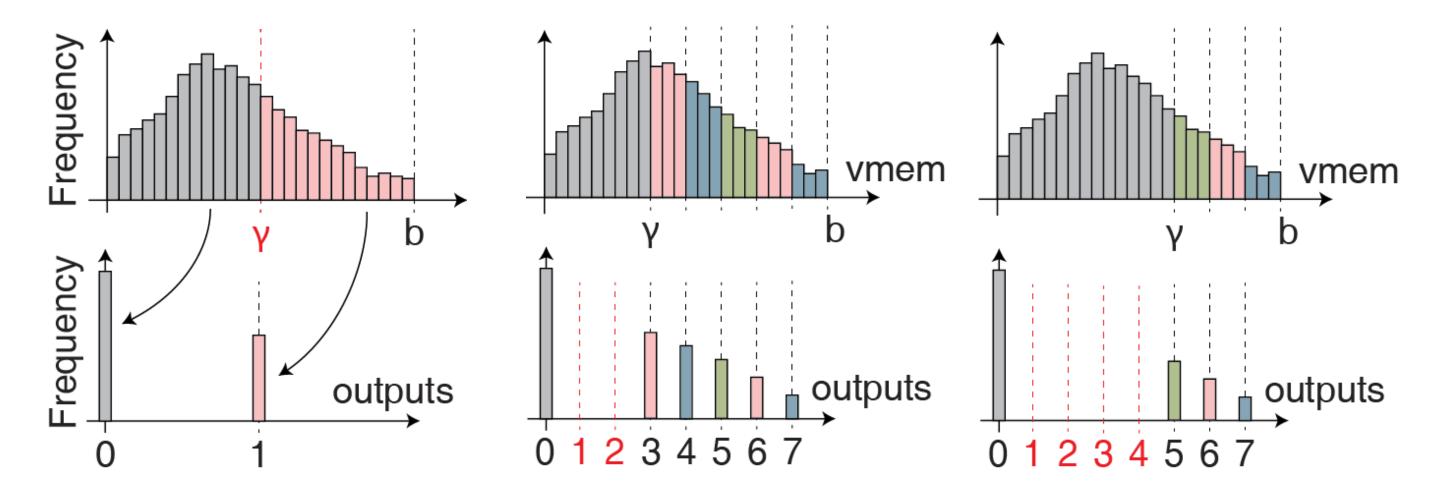
- Neurons have two internal states: synaptic current Syn and membrane potential *Mem* -1s are generated whenever

Mem exceeds a threshold γ



- Mitigate the problem by increasing output precision and making neurons output multi-level values

Generalize spiking output generation to multi-level output cases



vmer

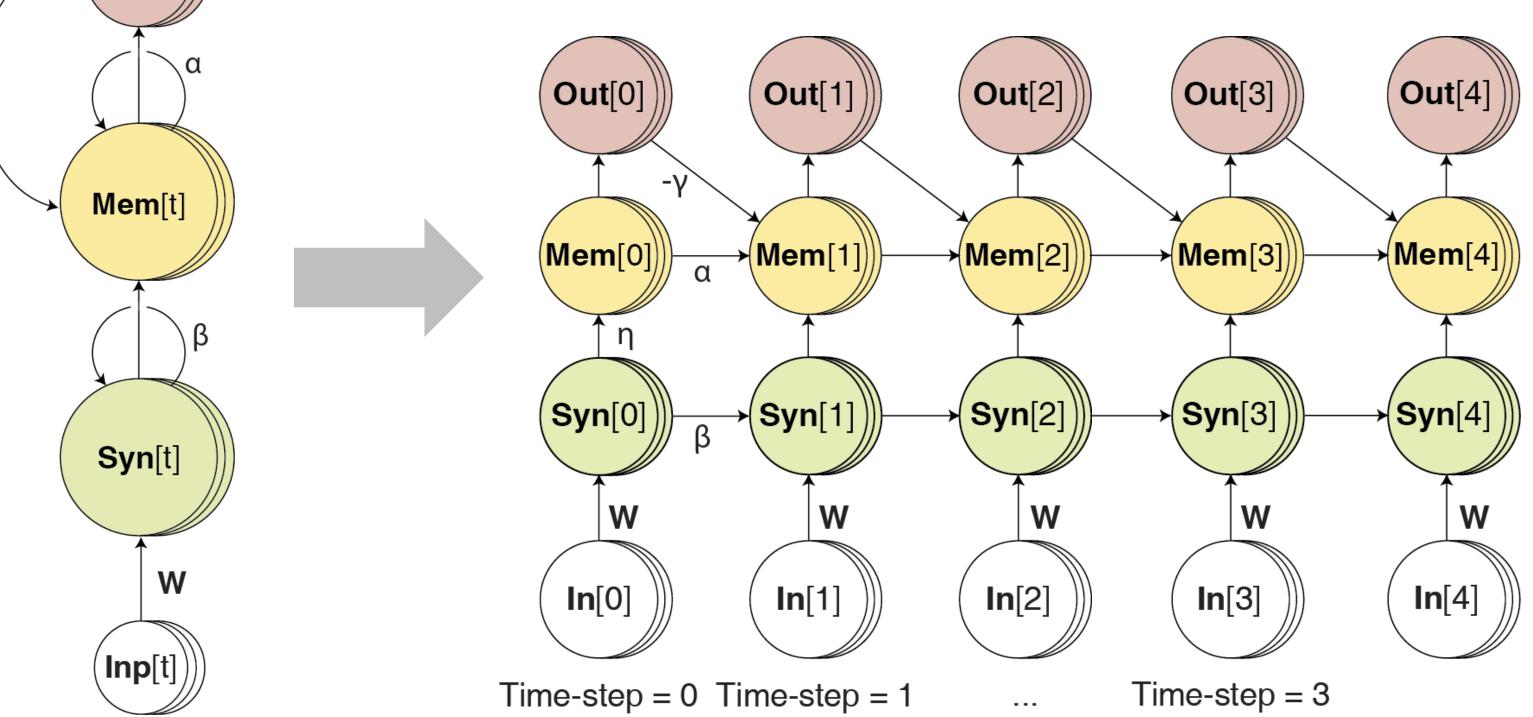
EXPERIMENTAL RESULTS

(**Outp**[t])

-γ

Unrolling the computation graph reveals the vanishing gradient problem

- Comparison between the proposed SNNs, vanilla SNNs, LSTMs, GRUs on TIMIT and LibriSpeech speech recognition tasks



MODIFICATIONS TO IMPROVE THE SNNS DYNAMICS

-Selectively update the *Syn* to avoid forceful decay of its value

Vanilla SNNs

 $\mathbf{Syn}[n] = \beta \, \mathbf{Syn}[n-1] + \mathbf{W} \, \mathbf{Inp}[t]$

Results on TIMIT dataset

Architecture	Prediction accuracy (%)	# of zero outputs (%)	Avg ops/inf (normalized)
LSTMs	82.68	< 0.01	1
GRUs	82.26	< 0.01	0.81
Vanilla SNNs	70.66	59.90	0.13
Proposed SNNs	81.28	84.29	0.08

Results on LibriSpeech dataset

Architecture	Prediction accuracy (%)	# of zero outputs (%)	Avg ops/inf (normalized)
LSTMs	89.95	< 0.01	1
GRUs	89.77	< 0.01	0.83
Vanilla SNNs	78.39	59.96	0.16
Proposed SNNs	88.25	86.33	0.08

- The proposed SNNs provide 2x reduction in the number of

Proposed SNNs with the improved dynamics

 $Forget[n] = \sigma(W_{fi} \operatorname{Inp}[n] + W_{fo} \operatorname{Outp}[n-1])$ $Cand[n] = ReLU(W_{ci} Inp[n] + W_{co} Outp[n - 1])$ $Syn[n] = Forget[n] \cdot Syn[n-1] + (1 - Forget[n]) \cdot Cand[n]$

-Forget and Cand indicate the amount to be removed and added to the synaptic currents **Syn**

trainable parameters over LSTMs while achieving comparable speech recognition accuracies

- The proposed SNNs lead to >10x reduction in the number of **MultOps** over GRUs due to their sparse communications

ACKNOWLEDGEMENT

This work is supported in part by C-BRIC, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA, IARPA Micro4AI program, DARPA AIE, NSF, and DoD

