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Engineering nanophotonic devices have been 
the focus for several data driven inverse design 
developments in recent years, specifically in 
topology optimization of photonic 
metastructures. In this work, we train a binary 
variational autoencoder (bVAE) to compress a 
set of discretized thermal emitter topologies 
into an 𝑛-dimensional binary latent space. We 
use the mean squared error as a measure of 
reconstruction loss of the bVAE against the size 
of the binary latent space. We find that the 
reconstruction loss converges to 0.027 at a 
binary latent space size of 100 bits. 

ABSTRACT

Thermal Emitter Optimization
Topology optimization in non-intuitive photonic 
structures are difficult to optimize in high-
dimensional parametric spaces. 

Figure 1. The objective function is the overlap 
efficiency between the emission spectrum of the 
metasurface and the absorption spectrum of the 
photovoltaic cell. The radiation from the array of 
thermal emitters is a function of the topology of 
the metasurface. a) Schematic of a thermo-
photovoltaic engine where the left metasurface
array radiates onto the photovoltaic cell. b) The 
solid line is a black body radiation curve at 1800-
°C; The black dashed line corresponds to an ideal 
thermal emitter’s emissivity and the absorption 
spectrum of the photovoltaic cell.
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APPLICATION EXAMPLE

- As the latent space size increases with 
increasing bit size, the reconstruction 
loss decreases inversely with the 
compression ratio, showing more 
accurate reconstruction.  

- This analysis is scalable for different 
applications of metasurfaces and can 
bolster their applications in different 
areas of thermal optimization. 

CONCLUSION

- By analyzing the tradeoff between 
reconstruction loss and binary latent 
space size, we can explore the limitations 
of optimizing the thermo-photovoltaic 
problem using quantum optimization. 

- When discretizing continuous space 
optimization problems, it’s important to 
consider the reconstruction loss, i.e., 
accuracy of discretized compression, vs 
problem size.

- By considering different latent space 
sizes, we can observe asymptotic 
behavior at each instance. 
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MSE Reconstruction Loss
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where 𝑥𝑛 is a discretized input 
metasurface, ො𝑥𝑛 is the reconstructed 
metasurface from the bVAE, and 𝑁
denotes the size of metasurface dataset. 

(1)

Latent Space Compression Ratio

An ideal bVAE is an invertible map 𝑔: 0,1 𝑘 →
0,1 𝑚 between the topology design space of 

size 2𝑘 and the latent space of size 2𝑚. 
Therefore, the compression ratio 𝛾 between 
these two spaces can be written as:

𝛾 = 2𝑘−𝑚. (2)

1) Split dataset into training, testing, and  
validation datasets.

2) For 𝑚 from 10:10:150 :
1) For each training epoch

1) Train bVAE
2) Measure reconstruction loss of testing 

dataset using (1).
2) Measure reconstruction loss of validation 

testing set using (1).

ALGORITHM

ො𝑥𝑛 ∈ {0,1}𝑘𝑥𝑛 ∈ {0,1}𝑘

BINARY VARIATIONAL AUTOENCODER (bVAE)

ො𝑦𝑛 ∈ {0,1}𝑚

MSE LOSS AGAINST LATENT SPACE COMPRESSION
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𝑘 - bVAE Latent Space Bit Size

Figure 2. The reconstruction loss for both the training set (blue) and the validation set 
(red) is measured as a function of the number of bits 𝑘 in the latent space vector of the 
bVAE. Using (2), we can compute the relation between the bit size and the compression 
ratio as 𝑘 = log 𝛾 +𝑚.
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