
Gradient Projection Memory for Continual Learning

Learning multiple task sequentially causes gradient interference between tasks

which leads to Catastrophic Forgetting. To solve this issue, we propose a novel

approach where a neural network learns new tasks by taking gradient steps in the

orthogonal direction to the gradient subspaces deemed important for past tasks.

Find Important Gradient Spaces:

❑ Input and Gradient Spaces are related 

❑ From learned network activations create Representation Matrix 

❑ Find the bases of this matrix using Singular Value Decomposition (SVD)

❑ Select top-k bases using k-rank approximation with threshold hyperparameter,𝜖𝑡ℎ
❑ Save bases in the memory – Gradient Projection Memory (GPM) 
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Stochastic gradient descent (SGD) updates lie in the span of input data points [1]. 

References: [1] Zhang et al., ICLR 2017, [2] Liu et al. NeurIPS 2018 [3] Farajtabar et al., AISTATS 2020   
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Algorithm - GPM:

❑ Step-1: Learn new task in the space orthogonal to GPM

❑ Step-2: Update GPM (after each task)

𝜵𝑾𝑳 = 𝜹𝒙𝑻At Fully Connected layer : 

(𝑊 → Weight,  𝛿 → Error,  𝑥 → input) 

The gradient updates in the fully connected layers lie in the span of input.  

Projection :

In neural network, gradient spaces can be defined in terms of input spaces.

𝜵𝒘𝑳 = 𝜵𝒘𝑳 − (𝑴𝑴𝑻)𝜵𝒘𝑳

𝑾 = 𝑾− 𝜶𝜵𝒘𝑳

At Convolutional Layer : 

Weight Update :

Learn new task in the orthogonal direction to space spanned by GPM

Experiments and Results
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Gradient Projection Memory

✓ Representation Matrix

✓ Representation Projection

✓ SVD on Representation

✓ Select top-k bases

✓ Save bases as GPM

GPM outperforms expansion-based methods using less parameters  

Dataset: CIFAR-100 Superclass, Architecture: LeNet-5 

Architecture: MLP, AlexNet, ResNet18 

➢ GPM outperforms memory-based methods such as GEM, A-GEM, ER_Res 

➢ GPM achieves best accuracy (60.41%) with zero forgetting in 20-miniImageNet tasks

➢ GPM has comparable performance to SOTA method in 5-dataset tasks

GPM outperforms memory-based methods with less memory utilization  

Layer-2 Layer-5

➢ Threshold (𝜖𝑡ℎ) determines number of gradient bases selected per task  

➢ Threshold (𝜖𝑡ℎ) controls the degree of interference between tasks 

➢ Lower 𝜖𝑡ℎhas higher interference while higher 𝜖𝑡ℎhas lower interference

➢ Increasing 𝜖𝑡ℎreduces forgetting and improves accuracy 

𝑊𝑇 = 𝑊1 + ∆𝑊1→𝑇 𝑥1~𝐷1 (Task 1)

𝑊𝑇𝑥1 = 𝑊1𝑥1 + ∆𝑊1→𝑇𝑥1

Weight after task T :

Activation for task 1 :

∆𝑊1→𝑇𝑥1 (interference activation) → 0𝑊𝑇𝑥1 ≈ 𝑊1𝑥1Zero Interference: 

Distributions of Interference activation Impact of 𝜖𝑡ℎ on performance
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