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Abstract

Learning multiple task sequentially causes gradient interference between tasks
which leads to Catastrophic Forgetting. To solve this issue, we propose a novel
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Experiments and Results

Architecture: MLP, AlexNet, ResNet18

Orthogonal Gradient Descent

Learn new task in the orthogonal direction to space spanned by GPM
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d From learned network activations create Representation Matrix

d Find the bases of this matrix using Singular Value Decomposition (SVD)

d Select top-k bases using k-rank approximation with threshold hyperparameter,e,;,
1 Save bases in the memory — Gradient Projection Memory (GPM)
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 Step-1: Learn new task in the space orthogonal to GPM

» GPM outperforms memory-based methods such as GEM, A-GEM, ER_Res
» GPM achieves best accuracy (60.41%) with zero forgetting in 20-minilmageNet tasks
» GPM has comparable performance to SOTA method in 5-dataset tasks
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L -l Step-2: Update GPM (after each task) J Gradlent PrOjeCthn I\/Iemory GPM outperforms memory-based methods with less memory utilization
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The gradient updates in the fully connected layers lie in the span of input. Memory Memory Memory Memory
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Distributions of Interference activation
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Conv layer: x — XT Threshold hyperparameter, ¢4, € [0,1]

extend l reshape l reshapeT

Weight after task T: W, = W, + AW, x1~Dq (Task 1)
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< _ ) < v o GPM outperforms expansion-based methods using less parameters > Threshold (¢,,,) determines number of gradient bases selected per task
Methods » Threshold (&;;,) controls the degree of interference between tasks
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