

Ferroelectric FET **Coupled-Oscillatory Network for** Edge Detection

Elmore Family School of Electrical and Computer Engineering

Eunseon Yu*, Amogh Agrawal, Dongqi Zheng, Mengwei Si, Minsuk Koo, Peide D. Ye, Sumeet K. Gupta, and Kaushik Roy

1) Inverter (pFeFET + nFET)

Simulation

SPICE

NANOELECTRONICS

RESEARCH

LABORATORY

7 in	Schmitt Trigger Operation
0	V _{out} is high
$V_{ m DD}$	Once V_{in} touches $V_{\text{trip,n}}$, nFET turns on and V_{out} goes to low.
, DD	$V_{\rm out}$ is low
$\rightarrow 0$	Changed $V_{\text{trip,p}}$ due to the forward sweep of V_{in} results Schmitt Trigger operation.

 $_{\text{piasp}} = 0.6$

V_{biasn} [V]

✤ Oscillation triggering is controlled by transmission gate Scillation frequency can be designed by the equation below: $f = \left(2\alpha \cdot \left\{R_{on} \cdot C_{out,eff} + C_{in,eff} \cdot \left(R_{on} + R_{TG}\right)\right\} + t_{p,LH} + t_{p,HL}\right)^{-1}$ the factor α relates (dis)charging delay of C_{in} to the voltage swing at the input node • Energy consumption per a single cycle: 0.84 nJ (V_{DD} = 0.9 V) ~ $3.97 \text{ nJ} (V_{\text{DD}} = 1.2 \text{ V})$. This is at least 29x lower compared to the $V_{\rm DD} = 1.1 \, {\rm V}$ previous work.

25

50

75

This work was supported in part by the Center for Brain-inspired Computing (C-BRIC), an SRC/DARPA JUMP center, and the National Science Foundation (NSF).