Quantum Phase Estimation:

High-Dimensional Photonic Advancements

Core Concepts
What is a quantum phase estimation algorithm (PEA)? Traditional implementation of qubit-PEA
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SPEA Schematic

Expanding on the work from (Lu, 2020), and
integrating ideas from the iterative PEA (IPEA),
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where |vy,) is any eigenstate of U, e s its corresponding eigenvalue
and 8, is called the eigenphase. While U can be applied to quantum
states, it is treated as an unknown black box!1!
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the Hadamard gate, which converts |0) to (|0) + |1))/V2. QFT 1 is the inverse of the 2™-dimensional quantum
Fourier transform gate. Upon measurement, each control qubit collapses to either O or 1. The eigenstate |
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Experimental setup: frequency-controlled time-target PEA

Each single photon counted is equivalent to one run of the
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output in time bin |0) to be measured, satisfying the needs of the SPEA.




