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What is a quantum phase estimation algorithm (PEA)?
A quantum phase estimation algorithm is a means of determining an 
unknown eigenphase of a unitary matrix 𝑈,

𝑈 𝜈𝑘 = 𝑒𝑖2𝜋𝜃𝑘 𝜈𝑘 .

where 𝜈𝑘 is any eigenstate of 𝑈, 𝑒𝑖2𝜋𝜃𝑘 is its corresponding eigenvalue 
and 𝜃𝑘 is called the eigenphase.  While 𝑈 can be applied to quantum 
states, it is treated as an unknown black box[1].

𝑛 qubits all initialized to |0⟩ make up the control register. If the unitary of interest 𝑈 is 2𝑏-by- 2𝑏 dimensional 
then 𝑏 qubits comprise the target register which can be initialized to any state |Φ⟩. In the diagrammed circuit, 
|Φ⟩ is initialized as eigenstate |𝜈𝑘⟩. Each control qubit controls whether a quantum gate will be applied to the 
target qubits; the gate is applied when the control is in |1⟩ and not applied when the control is |0⟩. 𝐻 represents 

the Hadamard gate, which converts |0⟩ to (|0⟩ + |1⟩)/√2. 𝑄𝐹𝑇−1 is the inverse of the 2𝑛-dimensional quantum 
Fourier transform gate. Upon measurement, each control qubit collapses to either 0 or 1. The eigenstate 

|𝜈𝑘⟩ corresponds to eigenvalue 𝑒𝑖2𝜋𝜃𝑘 and eigenphase 𝜃𝑘. If 𝜃𝑘 ∈ [0, 1) can be represented with a base-2 
number of 𝑛 or fewer digits, the measured values of the control qubits {𝑚x} will represent this value:

𝜃𝑘 = 0.𝑚1𝑚2…𝑚𝑛−1𝑚𝑛 base 2.

Otherwise, the measured values will represent an approximation ෪𝜃𝑘 with precision ±2𝑛 with high probability. 
The solid horizontal lines represent qubits in the circuit. Double lines represent classical information, typically 
generated by a measurement gate. The purple region outlines the n control qubits; the red region outlines the b 
target qubits.

Why PEA?
Quantum phase estimation algorithms (PEAs) are is key subroutine in 
many quantum algorithms, including:

o Shor’s factoring algorithm[2]

o Quantum principal component analysis[3]

o Generalized Grover’s search algorithm[4]

o Quantum simulations[5,6]
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Weiner Group:  https://engineering.purdue.edu/~fsoptics
Kais Group:  https://www.chem.purdue.edu/kais/

Work supported by National Science Foundation (NSF) under Award No. 1839191-
ECCS and under Award No. 2124511-CHE

Photonic Realization of high-dimensional PEA for diagonal unitary systems (Lu, 2020) 

PM/IM: Electro-optic 
phase/intensity modulator
PS: Fourier-transform pulse shaper
CFBG: Chirped fiber Bragg grating 
SNSPD: Superconducting nanowire 
single-photon detector
AWG: Arbitrary waveform 
generator.
Both radio-frequency oscillators (18 
and27 GHz) are synchronized to the 
10 MHz reference clock of the AWG.

A CW laser is carved into 3 
frequency bins, spaced at 54GHz. 
Three narrow (~.2ns) spaced by 6ns 
are carved. The CFBG separates the 
frequencies within each time bin, 
allowing the PM to apply a different 
phase to each bin. This realizes a
time-controlled (diagonal) unitary
gate, illustrated in the lower figure. 
The next CFBG closes the time bin. 
The final PM and PS apply a 
probabilistic inverse (discrete) 
Fourier transform operation on the 
frequency degree of freedom.

Experimental setup: frequency-controlled time-target PEA 

Description of controlled-phase gate

Core Concepts

Each single photon counted is equivalent to one run of the
traditional PEA circuit. As both the control and target 
degrees of freedom are realized on a single photon, a CW
laser source can be used, effectively running the PEA many 
times. On the left, figure (a) shows the results for a
diagonal unitary with eigenphases (0, Τ2𝜋 3, 4𝜋/3). Data
(b) shows the results for a diagonal unitary with 
eigenphases  (0, .3511𝜋, 1.045𝜋). The implementation is 
considered successful, as the data allows each eigenphase 
to be determined to the nearest trit (0 2𝜋/3, or 4𝜋/3).
As we have special knowledge that the input states are 
eigenstates, additional analysis is possible. See below.

Future Work

Results

Novel statistical analysis

Novel Statistical PEA (SPEA)(Moore, 2021) 

As many trials of the photon PEA have effectively 
been run, the statistics of the outputs can be used 
to determine a phase anywhere on 𝜃 ∈ [0, 2𝜋). A 
visual representation of this fitting is made on the 
right. Results and error tabulated above.

Expanding on the work from (Lu, 2020), and 
integrating ideas from the iterative PEA (IPEA), 
the statistical PEA (SPEA) was proposed and 
studied. The SPEA utilizes a variational scheme: 
a classical controller controls the input state 
and the rotation gate of an IPEA circuit. The 
statistics of the measured state serve as an 
objective function: the prepared state and 
applied rotation are the eigen-state and –phase 
when the control qudit deterministically is 
measured in bin |0⟩.

PM: Electro-optic phase/intensity modulator; PS: pulse shaper; IM: intensity modulator; QFP: Quantum 
frequency processor; C: 2-by-2 optical couplers; PC: phase controller (i.e. fiber shifter); AWG: Arbitrary 
waveform generator

A proposed setup for realizing a high-dimensional time-controlled frequency-target SPEA. A state 
preparation setup like (Lu, 2020) carves the CW laser into three frequency bins. The IM then carves the 
signal into four time bins prior to entering a loop. A QFP placed in a loop implements an arbitrary unitary 
operation on the frequency bins. The first (second, third) time-bin to enter the loop will make three (two, 
one) round trips prior to the last time bin entering the loop. This realizes a time-controlled unitary 
operation. The overlapping of the time bins realizes a pseudo-inverse Fourier transform which allows the 
output in time bin |0⟩ to be measured, satisfying the needs of the SPEA.

Presenter: Alexandria J Moore

SPEA Schematic

Simulated Results
The results from the quantum portion of the SPEA 
were simulated on both a classical computer and on 
IBM’s Qiskit platform. The classical controller was 
implemented using a modified gradient search 
algorithm. The SPEA successfully arrives at valid 
eigenstate-phase pairs regardless starting 
conditions, as shown in the table (right). The SPEA 
was tested on two 3-dimensional unitaries and one 
4-dimensional unitary.

Arbitrary unitary high-dimensional SPEA
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The SPEA can be iterated to perform a full 
spectral decomposition, recovering all 
eigenstate-phase pairs. This functionality was 
tested on the (quantum chemistry relevant) 16-
by-16 representation of the water molecule. 
The quality of the decomposition (both in 
overall matrix fidelity and minimum average 
eigenphase error) improved as higher-
dimensional control circuits were used. This 
illustrates not only the strength of the SPEA 
itself, but also indicates some unique 
advantages may be offered by high-dimensional 
algorithms.


