Avijit Karmakar

4340 S Drexel Blvd., Apt 37 • Chicago, IL 60653 • (901) 606-2011 • <u>akarmakar@hawk.iit.edu</u> • <u>linkedin.com/in/a-karmakar</u>

SUMMARY

- 5+ years of experience as a CFD researcher with a background in fluid dynamics and thermal sciences.
- Managed ARPA-E and NETL research projects by performing thermal system design optimization and CFD simulations.
- Timely delivered results and recommendations in technical reports for projects.
- Publications include five peer-reviewed journals, one book chapter, and three conference articles from research.
- Excellent academic achievements, learning ability, detail-orientated and multi-task handling skills.

EDUCATION

09/2016-08/2021	ILLINOIS INSTITUTE OF TECHNOLOGY Doctor of Philosophy in Mechanical and Aerospace Engineering Thesis: Computational modeling of Falling Film Flow and Heat Transfer Over Horizontal Tubes Advisor: Prof. Sumanta Acharya GPA: 4.0/4.0	Chicago, Illinois
09/2015-08/2016	UNIVERSITY OF MEMPHISMerDoctor of Philosophy in Mechanical Engineering (Transfer)Thesis: Computational modeling of Falling Film Flow and Heat Transfer Over Horizontal TubesAdvisor: Prof. Sumanta Acharya GPA: 4.0/4.0	nphis, Tennessee
08/2013-07/2015	INDIAN INSTITUTE OF TECHNOLOGY, KANPUR Master of Technology in Mechanical Engineering Thesis: Numerical Study of Vortex-Induced Vibrations in Flow past a Square Cylinder close to a Free Surface Advisor: Prof. Arun Kumar Saha GPA: 4.0/4.0 (WES conversion)	Kanpur, India ce
08/2009-07/2013	INDIAN INSTITUTE OF ENGINEERING SCIENCE AND TECHNOLOGY, SHIBPUR (FORMERLY: BESU) Bachelor of Engineering in Mechanical Engineering GPA: 3.88/4.0 (WES conversion)	Shibpur, India

SKILLS

Softwares:	OpenFOAM, Tecplot, Paraview, Matlab.
Methodologies:	Volume of Fluid, Porous Media, Phase Change Heat Transfer.
Program. Lang .:	C++, Fortran, Python, HPC Parallelization (OpenMP and OpenMPI).
Machine Learning:	Supervised learning (parametric/non-parametric algorithms, support vector machines, neural networks);
-	Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning)

WORK EXPERIENCE

09/2019-08/2021	ILLINOIS INSTITUTE OF TECHNOLOGY	Chicago, Illinois
	Research Assistant	
	 Developed steady-state design model of heat and mass exchanger for enhanced cooling tower technolog (Project Funding: NETL, DE-FE0031833) 	ју.
	• Utilized genetic algorithm to provide optimum system design variables to maximize cooling performance.	
	 Partnered with power industries for cost analysis and performed design optimizations resulting in 3% incr efficiency and 20% reduction in makeup water. 	ease in plant
09/2016-05/2019	ILLINOIS INSTITUTE OF TECHNOLOGY Research Assistant	Chicago, Illinois
	 Developed thermal design model of encapsulated PCM heat exchanger for dry cooling systems. (Project Funding: ARPA-E, DE-AR0000572) 	
	 Employed genetic algorithm to provide optimum design parameters with least capital cost. 	
	 Collaborated with energy industries for techno-economic analysis and performed design optimizations ba performance trade-off resulting in 10% cost reduction and improved thermal performance of PCM based over state-of-the-art dry cooling system. 	ised on cost cooling system
	 Executed high-fidelity CFD studies (VOF, LES & Porous Media) resulting in thermofluidic correlations to p exchanger performance. 	predict EPCM heat
	 Improved water film containment on hydrophobic tube surfaces with tube structural modifications and CF dynamic contact angle models (Kistler, Yokoi) in OpenFOAM. 	D studies utilizing

- Implemented 3-phase evaporation model (liquid, liquid-vapor, and gas) in OpenFOAM framework and quantified water loss in EPCM heat exchanger within 10% to experimental predictions.
- Headed and coordinated research project with quarterly reports, presentations for review meetings with ARPA-E & communicated findings with program managers.

08/2015-08/2016	UNIVERSITY OF MEMPHIS Research Assistant • Executed preliminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated PCM heat executed prediminary high-fidelity CFD simulations (VOF) for design of encapsulated prediminary high-fidelity (VOF) for design of encapsulated predimin	Memphis, Tennessee changer.
05/2012-07/2012	CESC LTD. Summer Intern	Kolkata, India

- Evaluated Free Air Delivery of compressor units and performed root cause failure analysis for compressor components to identify the health deterioration of compressors in plant.
- Proposed remedial action resulted in desired air quality and increase in Free Air Delivery by 30%.

TEACHING EXPERIENCE

(MMAE-525)"

01/2020-05/2020	ILL	INDIS INSTITUTE OF TECHNOLOGY Chicago, Illinoi	is
	Lecturer		
	•	Taught regular classes on "Design of Heat Exchangers" as a special topic for the course "Fundamentals of Heat Transfe	ər

PUBLICATIONS

Karmakar, A., Kanani, Y., Bhattacharya, A., Acharya, S., Taghizadeh, S., and Ling, K., 2019, "Optimization and Analysis of a Heat Exchanger with Encapsulated Phase Change Material," In AIAA Journal of Thermophysics and Heat Transfer, 2019. DOI:10.2514/1.T5720

Karmakar, A., and Acharya, S., "Heat Transfer Characteristics of Falling Film over Horizontal Tubes- A Numerical Study," In 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2017. DOI:10.2514/6.2017-0901

Karmakar, A., Kanani, Y., Bhattacharya, A., Acharya, S., Taghizadeh, S., and Ling, K., 2019, "Optimization and Analysis of a Heat Exchanger with Encapsulated Phase Change Material," In AIAA SciTech 2019 Forum, San Diego, California, 2019. DOI: 10.2514/6.2019-0533

Karmakar, A., Acharya, S., "Wettability Effects on Falling Film Heat Transfer Over Horizontal Tubes in Jet Flow Mode" In ASME 2019 Heat Transfer Summer Conference, ASME, 2019. DOI:10.1115/HT2019-3532

Karmakar, A., and Acharya, S., 2019, "A review of computational models for falling liquid films" in "50 years of CFD in Engineering Sciences" - A commemorative Issue in honor of Prof. D. Brian Spalding, Springer Nature. DOI: 10.1007/978-981-15-2670-1

Karmakar, A., and Acharya, S., "Wettability Effects on Falling Film Flow and Heat Transfer Over Horizontal Tubes in Jet Flow Mode" In ASME Journal of Heat Transfer, 2020. DOI: 10.1115/1.4048088

Karmakar, A., and Saha, A. K., "Unsteady Flow Past a Square Cylinder Near a Free Surface" In Physics of Fluids, 2020. DOI:10.1063/5.0028101

Karmakar, A., and Acharya, S., "Numerical simulation of falling film-flow hydrodynamics over round horizontal tubes" In International Journal of Heat and Mass Transfer, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121175

Kanani, Y., **Karmakar, A.**, and Acharya, S. "Phase Change Process Inside a Small-radii Cylinder Subjected to Cyclic Convective Boundary Conditions: A Numerical Study." ASME Journal of Heat Transfer, 2021. DOI: 10.1115/1.4052085

AWARDS AND CERTIFICATES

- Graduate Assistantship covering Ph.D. tuition cost and expenses, IIT and U of M
- Merit Scholarship in M.Tech Program at IIT Kanpur, May 2015
- Teaching Assistantship in M. Tech Program at IIT Kanpur, August 2013 July 2015
- First Runner Up for project activities in Summer Internship program at CESC Ltd.
- Machine Learning by Stanford University, Coursera, Oct 2019
- Introduction to Computational Techniques for Multiphase flows at Univ. of Illinois Urbana Champaign, July 2017

INTERESTS AND ACTIVITIES

• New Technologies, Open-Source Programming, Cricket, Travelling