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Problem Statement!
•  Debugging deployed Wireless Sensor Networks (WSN) 

–  Software: profilers affect timing and are OS 
specific 

–  Hardware: bench debuggers not suitable for 
WSN deployment 

•  How to perform tracing and profiling of software 
–  Non-intrusively 
–  With high spatial and temporal granularity 
–  Low energy 
–  Low cost 
–  Easy to integrate and deploy 

•  Tracing provides a sequence of events useful for debugging 
•  Profiling determines energy consumption and time per event 
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Solution Approach: AVEKSHA!

•  AVEKSHA is a hardware/software approach 
•  Exploit on-chip debug module (OCDM) 

–  Comes free on most MCUs (also called EEM on MSP430) 
–  Exposed through JTAG interface 
–  Asynchronous with MCU operation 
–  Advanced features: complex triggers for breakpoints and 

watchpoints, store state on trigger 

10010011011100! Debug!
Board!

JTAG!
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•  Connects to mote IO and JTAG 
•  Has an MCU for initialization and configuration 
•  Has an FPGA for high speed polling of OCDM state 

What We Built: The Telos Debug Board!
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Our Contributions!
•  Reverse engineered important JTAG protocol (MSP430) 

–  Common low-power sensor network MCU 
–  Enables profiling and tracing for this class of MCU chips 

•  Designed a HW/SW debugger suitable for deployed WSN 
–  Non-intrusive (does not alter software timing) 
–  OS and compiler agnostic 
–  Low power 
–  No significant hardware modification to mote 
–  Easy to deploy (does not need to be customized per application) 

•   Validated design through case studies 
–  Tracing and profiling in TinyOS and Contiki 
–  Found resource consuming bug in TinyOS low-power-listening radio stack 
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Presentation Outline!
•  OCDM Background 
•  Design 

–  Hardware 
–  Firmware 
–  Energy monitoring and other features 

•  Case studies 
–  Tracing TinyOS tasks and states 
–  A TinyOS bug 
–  Contiki Processes 
–  Profiling Functions 

•  Conclusions and Future Research 
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•  JTAG interface uses 4 pins 
–  TDO data output 
–  TDI data input 
–  TMS select mode 
–  TCK clock 

•  MSP430 OCDM responds to various commands sent over JTAG 
•  Used command sequences 

–  Set watchpoint and breakpoint triggers 
–  Poll CPU status (e.g., if halted at a breakpoint) 
–  Poll the state-storage buffer (for information stored at watchpoint trigger) 
–  Poll the program counter (PC) 

•  These sequences map to 3 operation modes of the board: 
watchpoint (WP), breakpoint (BP), and PC polling 

Background: Interfacing to the OCDM over JTAG!
0 1 2 3 4 5 6 7BIT

TDO

TDI

TMS

TCK
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WP/BP Mode: MSP430 OCDM Triggers!
•  Total of 8 triggers can be set on OCDM through JTAG 
•  Each trigger specifies a condition on 

–  Value present on data or address bus (MDB/MAB) 
–  Operation type: read, write, or instruction fetch (-R/-W/-F) 

•  Can combine individual triggers to create complex triggers 
•  8 entry state-storage circular buffer stores MDB and MAB when trigger fired; 

can be read out through JTAG 

•  Key design challenge: read buffer at a fast rate to prevent overwritten data 

...!
0x4545: call 0x5550!
...!

MDB-F==0x12B0!

data=0x12B0!
addr=0x4545!

Code! Triggers! next!

State!
Storage!



Slide 9/23 

•  Triggers can be set for generic events e.g., function call and return 

WP/BP Mode: Mapping Software Events to Triggers!

•  A “nop” instruction can be used by the programmer to specify 
arbitrary trigger locations in code 

if (ready()) {!
   NOP;   // state_m ON!
   state_m = ON;!
} else {!
   NOP;   // state_m OFF!
   state_m = OFF;!
} !!

name   value!

provided to tracer!
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PC Polling Mode!
•  OCDM allows continuous polling of program counter 
•  Provides information about program control flow 
•  PC value can be mapped to a code block or function 

–  Need to know the start address of each code block or function 
•  Basic use of PC polling 

void f() {!
   if (x) {!
      a();!
   } else {!
      b();!
   }!
   ...!
}!

f!

a! b!

f!

Flow a! Flow b!
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PC Polling: Extracting Function Start Addresses!
•  At boot-up, read program binary from mote through 

JTAG and perform disassembly 
–  Discover location of function and interrupt start addresses 
–  Used to lookup what function a PC address belongs to 
–  Has the advantage of requiring no setup in advance 

4078 <sig_TIMERA0_VECTOR>:!
   4078: 0f 12       push r15!
   407a: 0e 12       push r14!
   407c: 0d 12       push r13!
   407e: 0c 12       push r12!
   4080: b0 12 94 40 call #0x4094!
   4084: 3c 41       pop  r12!
   4086: 3d 41       pop  r13!
   4088: 3e 41       pop  r14!
   408a: 3f 41       pop  r15!
   408c: b1 c0 f0 00 bic  #240, 0(r1)!
   4090: 00 00!
   4092: 00 13       reti!
!
4094 <Msp430TimerCapComP__0__Event__fired>:!
   4094: 1f 42 62 01 mov  &0x0162, r15!
   4098: 8f 10       swpb r15!
   409a: 5f f3       and.b #1, r15!
   409c: 02 24       jz   $+6!
   409e: 1f 42 72 01 mov  &0x0172,r15!
   40a2: 30 41       ret!

ffe0 <InterruptVectors>:!
403a!
8536!
8c24!
8876!
8460!
40c4!
4078!
86aa!

Function start address table!
0x4078!
0x4094!
...!
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Limitations of Watchpoint and PC Polling Modes!
•  Watchpoint mode 

–  State-storage buffer is 8 entries 
–  Each poll and read of state buffer takes 122 mote cycles 
–  Therefore, cannot exceed burst of 8 events in 976 mote cycles 
–  For example, suitable for monitoring task execution and state 

transitions in TinyOS, but not function calls 

•  PC polling mode 
–  Only provides PC values, cannot get MDB and MAB values 
–  Each PC poll takes 7 mote cycles 
–  Suitable for task and function call granularity 

•  Cannot do watchpoint polling and PC polling at the same 
time 
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•  If JTAG is controlled by software 
–  MCU has to generate JTAG clock and process data 
–  For example, using another MSP430 running at 8MHz would take the time shown 

Design Challenge: Speed of JTAG Polling!

•  Datasheet specifies 10MHz JTAG clock maximum 
–  We find we can reliably clock at 12MHz (WP mode) and up to 24MHz (PC poll) 

•  Using FPGA clocked at 48MHz we can achieve the maximum polling rate 
–  FPGA generates 24Mhz JTAG clock 
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•  We use a pipelined architecture on the FPGA to improve 
the throughput of OCDM to TDB communication 

•  For example, PC polling pipeline stages are 
–  Poll PC address 
–  Binary search for function pointer 
–  Filter block: does PC value indicate entry into a new function 
–  Output buffer interfaces to debug board MCU 

FPGA Pipeline for Function Profiling!

•  The pipelined architecture enables us to keep up with the 
rate of the OCDM event stream 

PC poll Function
lookup Filter Output

Buffer

Mote
JTAG

MCU

On TDB FPGA
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•  Energy monitoring 
–  Range of 18uA to 30mA 
–  Two amplifiers x10 and x105 
–  Inexpensive 12bit ADC (on MSP430) 
–  Samples at 20kHz 

•  Streaming data over USB 
–  Can also be used as a bench-top debugger 

•  Can be powered through USB or battery 
–  Provides power to the mote 

•  Low power, board enters sleep when mote is in sleep 

Other Features of the Board!
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•  Inserted “nop” instruction for 
–  Each state transition (indicated by an assignment to variables *m_state) 
–  Each task handler 

 

•  Gives visibility of fine grained events 

Case Study 1: Using Watchpoints to Trace TinyOS States!
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•  Discovered a bug in TinyOS when tracing tasks 
•  PowerCycleP__startRadio re-posts itself 

PowerCycleP Re-post Bug!
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•  startRadio task re-posts if SubControl__start() != SUCCESS!
•  When radio is already started, SubControl__start() = EALREADY!

PowerCycleP Bug Explained!

•  Re-post could be permanent with following hypothetical code 

•  Simple fix 

•  Now patched in TinyOS repository (bug tracker issue 51) 
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With Bug Fixed!
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•  Light tracking application [IPSN’11]  
•  Set “nop” instructions for Contiki processes 
•  Verifies OS agnostic nature of our architecture 

–  Required no change of TDB switching from TinyOS to Contiki 
application 

Case Study 2: Monitoring Contiki Processes!
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•  PC polling down to granularity of 7 mote cycles 
•  Usually enough to catch every function transition 
•  Can be combined with call graph information to generate 

a profile 

Case Study 3: Profiling with PC Polling!
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Conclusions!
•  We proposed a hardware software approach for tracing and 

profiling of sensor network software 
•  Designed, implemented, and tested the Telos Debug Board 

–  Non-intrusive (does not change timing) 
–  OS/compiler agnostic 
–  No significant hardware modification to mote 
–  Easy to deploy (does not need a priori knowledge of application) 

•  Future design improvements 
–  Reduce power in sleep mode (fast wakeup) 
–  Improve energy monitoring accuracy 
–  Add additional flash storage 

•  Future research directions 
–  Debugging a deployed network 
–  Applications such as record-and-replay 
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Thank You!
Matthew Tancreti (mtancret@purdue.edu) 


