
Slide 1/23

 AVEKSHA: A Hardware-Software Approach for Non-
intrusive Tracing and Profiling of Wireless Embedded

Systems

Matthew Tancreti, Mohammad Sajjad Hossain,!
Saurabh Bagchi, Vijay Raghunathan!

School of Electrical and Computer Engineering!
Purdue University!

Slide 2/23

Problem Statement!
•  Debugging deployed Wireless Sensor Networks (WSN)

–  Software: profilers affect timing and are OS
specific

–  Hardware: bench debuggers not suitable for
WSN deployment

•  How to perform tracing and profiling of software
–  Non-intrusively
–  With high spatial and temporal granularity
–  Low energy
–  Low cost
–  Easy to integrate and deploy

•  Tracing provides a sequence of events useful for debugging
•  Profiling determines energy consumption and time per event

Slide 3/23

Solution Approach: AVEKSHA!

•  AVEKSHA is a hardware/software approach
•  Exploit on-chip debug module (OCDM)

–  Comes free on most MCUs (also called EEM on MSP430)
–  Exposed through JTAG interface
–  Asynchronous with MCU operation
–  Advanced features: complex triggers for breakpoints and

watchpoints, store state on trigger

10010011011100! Debug!
Board!

JTAG!

Slide 4/23

•  Connects to mote IO and JTAG
•  Has an MCU for initialization and configuration
•  Has an FPGA for high speed polling of OCDM state

What We Built: The Telos Debug Board!

!"#$% &'(%)*% +,$#%
,-./&012%)31245672%

,2809%:012%

(;91426:%(<.%
=10%"'%0;>0368?%

-0@391426:%(<.%
=10%:012%0;>0368?%

,-.%

Slide 5/23

Our Contributions!
•  Reverse engineered important JTAG protocol (MSP430)

–  Common low-power sensor network MCU
–  Enables profiling and tracing for this class of MCU chips

•  Designed a HW/SW debugger suitable for deployed WSN
–  Non-intrusive (does not alter software timing)
–  OS and compiler agnostic
–  Low power
–  No significant hardware modification to mote
–  Easy to deploy (does not need to be customized per application)

•  Validated design through case studies
–  Tracing and profiling in TinyOS and Contiki
–  Found resource consuming bug in TinyOS low-power-listening radio stack

Slide 6/23

Presentation Outline!
•  OCDM Background
•  Design

–  Hardware
–  Firmware
–  Energy monitoring and other features

•  Case studies
–  Tracing TinyOS tasks and states
–  A TinyOS bug
–  Contiki Processes
–  Profiling Functions

•  Conclusions and Future Research

Slide 7/23

•  JTAG interface uses 4 pins
–  TDO data output
–  TDI data input
–  TMS select mode
–  TCK clock

•  MSP430 OCDM responds to various commands sent over JTAG
•  Used command sequences

–  Set watchpoint and breakpoint triggers
–  Poll CPU status (e.g., if halted at a breakpoint)
–  Poll the state-storage buffer (for information stored at watchpoint trigger)
–  Poll the program counter (PC)

•  These sequences map to 3 operation modes of the board:
watchpoint (WP), breakpoint (BP), and PC polling

Background: Interfacing to the OCDM over JTAG!
0 1 2 3 4 5 6 7BIT

TDO

TDI

TMS

TCK

Slide 8/23

WP/BP Mode: MSP430 OCDM Triggers!
•  Total of 8 triggers can be set on OCDM through JTAG
•  Each trigger specifies a condition on

–  Value present on data or address bus (MDB/MAB)
–  Operation type: read, write, or instruction fetch (-R/-W/-F)

•  Can combine individual triggers to create complex triggers
•  8 entry state-storage circular buffer stores MDB and MAB when trigger fired;

can be read out through JTAG

•  Key design challenge: read buffer at a fast rate to prevent overwritten data

...!
0x4545: call 0x5550!
...!

MDB-F==0x12B0!

data=0x12B0!
addr=0x4545!

Code! Triggers! next!

State!
Storage!

Slide 9/23

•  Triggers can be set for generic events e.g., function call and return

WP/BP Mode: Mapping Software Events to Triggers!

•  A “nop” instruction can be used by the programmer to specify
arbitrary trigger locations in code

if (ready()) {!
 NOP; // state_m ON!
 state_m = ON;!
} else {!
 NOP; // state_m OFF!
 state_m = OFF;!
} !!

name value!

provided to tracer!

Slide 10/23

PC Polling Mode!
•  OCDM allows continuous polling of program counter
•  Provides information about program control flow
•  PC value can be mapped to a code block or function

–  Need to know the start address of each code block or function
•  Basic use of PC polling

void f() {!
 if (x) {!
 a();!
 } else {!
 b();!
 }!
 ...!
}!

f!

a! b!

f!

Flow a! Flow b!

Slide 11/23

PC Polling: Extracting Function Start Addresses!
•  At boot-up, read program binary from mote through

JTAG and perform disassembly
–  Discover location of function and interrupt start addresses
–  Used to lookup what function a PC address belongs to
–  Has the advantage of requiring no setup in advance

4078 <sig_TIMERA0_VECTOR>:!
 4078: 0f 12 push r15!
 407a: 0e 12 push r14!
 407c: 0d 12 push r13!
 407e: 0c 12 push r12!
 4080: b0 12 94 40 call #0x4094!
 4084: 3c 41 pop r12!
 4086: 3d 41 pop r13!
 4088: 3e 41 pop r14!
 408a: 3f 41 pop r15!
 408c: b1 c0 f0 00 bic #240, 0(r1)!
 4090: 00 00!
 4092: 00 13 reti!
!
4094 <Msp430TimerCapComP__0__Event__fired>:!
 4094: 1f 42 62 01 mov &0x0162, r15!
 4098: 8f 10 swpb r15!
 409a: 5f f3 and.b #1, r15!
 409c: 02 24 jz $+6!
 409e: 1f 42 72 01 mov &0x0172,r15!
 40a2: 30 41 ret!

ffe0 <InterruptVectors>:!
403a!
8536!
8c24!
8876!
8460!
40c4!
4078!
86aa!

Function start address table!
0x4078!
0x4094!
...!

Slide 12/23

Limitations of Watchpoint and PC Polling Modes!
•  Watchpoint mode

–  State-storage buffer is 8 entries
–  Each poll and read of state buffer takes 122 mote cycles
–  Therefore, cannot exceed burst of 8 events in 976 mote cycles
–  For example, suitable for monitoring task execution and state

transitions in TinyOS, but not function calls

•  PC polling mode
–  Only provides PC values, cannot get MDB and MAB values
–  Each PC poll takes 7 mote cycles
–  Suitable for task and function call granularity

•  Cannot do watchpoint polling and PC polling at the same
time

Slide 13/23

•  If JTAG is controlled by software
–  MCU has to generate JTAG clock and process data
–  For example, using another MSP430 running at 8MHz would take the time shown

Design Challenge: Speed of JTAG Polling!

•  Datasheet specifies 10MHz JTAG clock maximum
–  We find we can reliably clock at 12MHz (WP mode) and up to 24MHz (PC poll)

•  Using FPGA clocked at 48MHz we can achieve the maximum polling rate
–  FPGA generates 24Mhz JTAG clock

Slide 14/23

•  We use a pipelined architecture on the FPGA to improve
the throughput of OCDM to TDB communication

•  For example, PC polling pipeline stages are
–  Poll PC address
–  Binary search for function pointer
–  Filter block: does PC value indicate entry into a new function
–  Output buffer interfaces to debug board MCU

FPGA Pipeline for Function Profiling!

•  The pipelined architecture enables us to keep up with the
rate of the OCDM event stream

PC poll Function
lookup Filter Output

Buffer

Mote
JTAG

MCU

On TDB FPGA

Slide 15/23

•  Energy monitoring
–  Range of 18uA to 30mA
–  Two amplifiers x10 and x105
–  Inexpensive 12bit ADC (on MSP430)
–  Samples at 20kHz

•  Streaming data over USB
–  Can also be used as a bench-top debugger

•  Can be powered through USB or battery
–  Provides power to the mote

•  Low power, board enters sleep when mote is in sleep

Other Features of the Board!

-
+

-
+

-
+

-
+

Rsense
3.74

3.3V 3.3V
5V

5V

3.3V

3.3V

ADCx10

ADCx105

100

0.1u

100

0.1uMote DVCC

10

105

Sense Amplify Filter Protect

Slide 16/23

•  Inserted “nop” instruction for
–  Each state transition (indicated by an assignment to variables *m_state)
–  Each task handler

•  Gives visibility of fine grained events

Case Study 1: Using Watchpoints to Trace TinyOS States!

Slide 17/23

•  Discovered a bug in TinyOS when tracing tasks
•  PowerCycleP__startRadio re-posts itself

PowerCycleP Re-post Bug!

Slide 18/23

•  startRadio task re-posts if SubControl__start() != SUCCESS!
•  When radio is already started, SubControl__start() = EALREADY!

PowerCycleP Bug Explained!

•  Re-post could be permanent with following hypothetical code

•  Simple fix

•  Now patched in TinyOS repository (bug tracker issue 51)

Slide 19/23

With Bug Fixed!

Slide 20/23

•  Light tracking application [IPSN’11]
•  Set “nop” instructions for Contiki processes
•  Verifies OS agnostic nature of our architecture

–  Required no change of TDB switching from TinyOS to Contiki
application

Case Study 2: Monitoring Contiki Processes!

Slide 21/23

•  PC polling down to granularity of 7 mote cycles
•  Usually enough to catch every function transition
•  Can be combined with call graph information to generate

a profile

Case Study 3: Profiling with PC Polling!

Slide 22/23

Conclusions!
•  We proposed a hardware software approach for tracing and

profiling of sensor network software
•  Designed, implemented, and tested the Telos Debug Board

–  Non-intrusive (does not change timing)
–  OS/compiler agnostic
–  No significant hardware modification to mote
–  Easy to deploy (does not need a priori knowledge of application)

•  Future design improvements
–  Reduce power in sleep mode (fast wakeup)
–  Improve energy monitoring accuracy
–  Add additional flash storage

•  Future research directions
–  Debugging a deployed network
–  Applications such as record-and-replay

Slide 23/23

Thank You!
Matthew Tancreti (mtancret@purdue.edu)

