November 2020

Explaining the sound of Purdue’s ‘clapping circle’

By Purdue ASA

Purdue University’s chapter of the Acoustical Society of America can now explain the sound heard when someone claps at the noted “clapping circle” on campus. Equally impressive, ASA members have proven the related theory of a Purdue acoustical engineering professor.  

Since 1996, students and visitors have discovered a clapping circle in Academy Park, located between Heavilon Hall and the corridor that separates Purdue Memorial Union from Stewart Center. On Purdue’s West Lafayette campus, there are 10 such circles besides the most famous one, which are landscape architectures made of stone tiles laid in concentric circles. 

The attraction of any clapping circle centers around an unexpected squeak — the sound returned to the clapping individual. For years, Purdue scholars have wondered what causes this.

“We’ve been aware of the clapping circle phenomena for many years and have always had this idea that it would be fun to do some measurements to find exactly what the effect is,” says J. Stuart Bolton, a mechanical engineering professor who specializes in acoustics and noise control.

Equally curious, ASA members decided to launch a research project in fall 2019 and secured funding through the Student Organization Grant Allocation Board.

“When we decided to pursue the clapping circle project, the deadline to apply for the grant was that same week, so this almost didn’t happen,” says past ASA president Elspeth Wing, a senior studying acoustical engineering. “We quickly made our supply list and wrote the proposal, submitted it by the deadline, and we learned our proposal was awarded — all in short time.”

The team based its research on three widely known theories. According to Bolton, some people at Purdue had believed rounded benches positioned around the circles reflect the clapping noise. Others felt the reflections come from buildings in the surrounding areas.

Bolton had his own theory. “Generally, when we look at the timing of the return of noise, the returns come back much sooner than they would if they had to travel to the bench or buildings and back,” he says.

Bolton’s theory focused on the speed of sound being about one foot per millisecond, with the clapping circle sounds returning in just a few milliseconds.

“It had to be coming from close by,” Bolton says. “So my theory was that the sound was from the ground, hitting the grooves between the stone tiles and, therefore, the sound was scattering back toward the clapper.”

Students conducted preliminary tests to obtain baseline measurements without nearby buildings. The Gold and Black Fields on campus served as this preliminary location, with a balloon impulse test rig used for measurement. “A large field was chosen because it is quiet, empty and has absorptive grass beneath the test rig,” says Steven Herr, a senior in electrical and computer engineering. 

The rig itself consisted of a +5V motor operated 100 feet away that spins a needle to pop a balloon. A nearby microphone measured the resulting sound. 

The team then conducted research at various clapping circles using an impulse response procedure.

To test the data, the team used a mathematical model created by graduate student Tony Xue (BS Mechanical Engineering ’19) for data visualization and interpretation.

“I had created an algorithm to help analyze the spectrogram for time, frequency and history of a sound recording during the first semester of my PhD,” Xue says. “I was helping with another project related to a laser printer. This algorithm happened to help with this clapping circle project.”

Xue found similarities between the two projects, as both required researchers to recognize the squeak/sound’s frequency characteristics. “The very important characteristic of the squeaking is the pitch frequency,” he says. “We want to recognize its frequency and then use it to prove what we thought was correct.” 

Students conducted the research on a Sunday night to reduce outside noise and interruptions. The team had already ruled out the building reflection theory because the reflections would return way after the squeak occurs with respect to the clap, relatively speaking. 

They started with the largest architectural circle. The team then collected the impulse response data at the clapping circle nearest Wetherill Hall, which didn't have benches on its perimeter, thereby testing the bench reflection theory. 

At both spots, stone tiles and grooves were covered in a series of configurations. As more tiles were covered, the squeak faded and was confirmed through the comparison baseline model recorded at the open field.  

As a result, students learned the squeak from the clap is caused by the sum of reflections from the grooves between the tiles. “The results are based on the time it would take to travel to and from the grooves, the spectrograms of measurements that fit with the mathematical model based on Professor Bolton’s theory. We were able to rule out the benches because the circle without the benches still displayed the squeak,” Wing says.  

For her work on this project, Wing received the Leo Beranek Student Medal for Excellence in Noise Control Study, named for the famous noise control engineer.

Congratulations to these ASA members: undergraduates Alex Dufour, Steven Herr, Fred Hoham, Lingwei Meng, Morgan Merrill, Alex Petty, Donovan Samphier, Elspeth Wing; graduate students Kushagra Singh, Weimin Thor, Tony Xue; and professors J. Stuart Bolton and Davin Huston.


Related info

Acoustical Engineering

 

 

Stories from Purdue

More Stories from Purdue

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600

© 2015-21 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by Office of Strategic Communications

Trouble with this page? Disability-related accessibility issue? Please contact News Service at purduenews@purdue.edu.