
 223 

 



 224 

 

 



 225 

 

 



 226 

 



 227 

        PREFACE 

THE present bulletin has been prepared under conditions somewhat different from 

other publications and bulletins of the Carnegie Foundation. This study of Engineer-

ing Education arose out of the action of a joint committee on engineering education, 

representing the principal engineering societies. More than three years ago the Com-

mittee had gathered a considerable amount of material bearing on the subject, and 

had come to the opinion that the work could be best carried out by the employment of 

some one trained in applied science, who should devote his entire attention to the 

study, working under the general direction of the Committee and in touch with it. The 

Carnegie Foundation agreed to appoint such a man and to bear the expense of the 

study. Professor Charles R. Mann, of the University of Chicago, undertook the work 

under these conditions, and the report which follows is the outcome of his studies 

under the general supervision of the Committee. The discussion of Professor Mann’s 

report by the Committee forms the introductory chapter. 

 It will be understood that the report did not contemplate a study or examination of 

the engineering schools of the United States, altho a limited number of typical 

schools were visited and studied by Professor Mann. The point of view from which 

the study was undertaken was the following: Fifty years ago, when the engineering 

schools of the United States were inaugurated, they began their work upon a definite 

teaching plan and one that had at least pedagogic consistency. The course was four 

years. The first two were spent mainly in the fundamental sciences— chemistry, 

physics, mathematics, and mechanics; the last two years mainly in the applications of 

these sciences to theoretical and practical problems. 

 In the half century that has passed this course of study has been overlaid with a 

great number of special studies intended to enable the student to deal with the con-

stantly growing applications of science to the industries. While the original teaching 

plan remains as the basis of the four-year engineering curriculum, the courses given 

in most schools have been greatly modified in the effort to teach special subjects. As 

a result, the load upon the student has become continually heavier and bears unequal-

ly in different places and in different parts of the course. In addition there is a wide 

spread feeling that under this pressure the great body of students fail to gain, on the 

one hand, a satisfactory grounding in the fundamental sciences; and on the other 

hand, do not fulfil the expectations of engineers and manufacturers in dealing with 

the practical problems with which they are confronted on leaving the engineering 

schools. 

 It is out of this situation that the Committee of the Engineering Societies began its 

study, whose purpose is not so much to record the details of engineering teaching in 

the various schools as to examine the fundamental question of the right methods of 

teaching and of the preparation of young men for the engineering professions: in oth-

er words, to question anew the pedagogic solution of fifty years ago, to examine 
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the curriculum of to-day and the methods of teaching now employed, and to suggest 

in the light of fifty years of experience the pedagogic basis of the course of study in-

tended to prepare young men for the work demanded of the engineer of to-day. In the 

effort to do this, the point of view of the teacher, of the engineer, and of the manufac-

turer and employer has been kept in view. 

 While the report and the introduction of the Committee deal with many matters of 

detail in the formation and development of a suitable curriculum, and suggest various 

methods for simplifying the present courses of study, three questions of importance 

are raised which are closely related to the primary purpose for which the engineering 

school exists. 

 Professor Mann argues that the present arrangement, under which the fundamental 

sciences are taught in advance of their applications, is the wrong method of teaching, 

and that the engineering education will never be satisfactory until theory and practice 

are taught simultaneously. 

 For example, mathematics is the most important tool of the engineer. It is taught 

for two years in the engineering school in separate courses—higher algebra, coordi-

nate geometry, the calculus, and mechanics. The splitting up of mathematics into 

separate courses is itself a source of weakness from the standpoint of the student’s 

needs. He needs not studies nor recitations in these artificial divisions of mathemat-

ics, but a single course in mathematics illuminated and made alive at every step by 

applications in the solutions of actual problems. Algebra, coordinate geometry, and 

the calculus are not separate and unrelated studies, but merely parts of the one subject 

of mathematics. 

 As a consequence of this method of teaching Professor Mann urges that the engi-

neering courses, as taught in the preliminary years, do not form sound criteria for 

judging as to the ability of the student to do successful engineering work, and that 

many students are sent away from the technical school without having had any fair 

test as to their capacity for engineering practice or study. 

 In the third place he gives the results of certain objective tests designed to throw 

light upon the fitness of the applicant to undertake engineering studies and practice. It 

is quite clear that the trial of these tests made hitherto is not sufficient to demonstrate 

their trustworthiness, but the question raised is an exceedingly interesting one. There 

are few devices connected with teaching more unsatisfactory than our present day 

examinations, whether used as tests for admission or as criteria of performance on the 

part of the student. 

 In general these suggestions of Professor Mann, if carried out, would affect present 

day teaching of engineering in much the same way that Langdell’s case method revo-

lutionized the teaching of law. 

 Langdell built the teaching of law exclusively and directly upon the study of cases.  

His notion was that the principles upon which the law rests are few in number, and 

that these could be best apprehended and mastered by the student in the direct 
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examination of typical cases. The number of such cases necessary to illustrate these 

principles he held to be very small in comparison with the overwhelming mass of law 

reports to which the student had formerly been directed as the basis of the study of 

the law in conjunction with textbooks. Langdell’s method involved the working out 

by the student of the principles of the law from actual cases tried and decided in the 

courts. Law he conceived of as an Applied Science. 

 Langdell’s method is not infrequently referred to as the laboratory method of teach-

ing law, conveying the impression that the case method of teaching law consists in 

transferring to the teaching of law the methods employed in the teaching of applied 

science. This statement has been the cause of no little confusion. The teaching of law 

by the case method presents only a remote analogy with the methods hitherto em-

ployed in teaching applied science. Applied science is not taught ordinarily in the 

engineering school by the case method. On the contrary, the methods actually em-

ployed in teaching the so-called laboratory subjects do not differ appreciably from 

the methods of teaching literature or Latin. At present the student undertakes to learn 

a vast body of theory under the name of physics, mechanics, or chemistry, illustrated 

in some measure in the laboratory, and then seeks later to select from this mass of 

knowledge the principles to be applied, for example in electrical engineering. The 

case method would proceed in directly the opposite manner. Taking up, for example, 

the dynamo as a “case,”— that is, as an illustration of physical laws in their actual 

concrete working,—it would proceed to analyze the machine for the purpose of dis-

covering the fundamental physical or mechanical principles involved in its operation. 

It would lead the student from practical applications by analysis to a comprehension 

of theory, instead of from theory to applications as under present methods of teach-

ing. 

 It is an interesting fact that while much is said about the teaching of science in the 

modern school, the methods of teaching science are actually but little changed from 

those employed in teaching the subjects that filled the curriculum before the teaching 

of science began in the school. The practical suggestion of this report is that the case 

method of teaching is truly scientific and that the present methods of teaching applied 

science are unscientific.   Furthermore, as an essential feature of the new method of 

teaching science, Professor Mann would combine theory with practice much more 

intimately than occurs in the law schools of the present day, by requiring the student 

to learn to operate the “case” under study. The student must not merely observe and 

analyze the operation of the dynamo: he must also actually run it and repair it when 

out of order. The method of teaching he advocates for engineering students, while 

based on the same conceptions as Langdell’s pedagogic innovation, is designed to 

meet some of the objections commonly raised to-day against even case method law 

schools. 

 Whatever may be thought of this contention, the subject is one of great signifi-

cance, and worthy of the attention of teachers and engineers. Engineering schools, 
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like all institutions of learning, are slow to undertake educational experiments. It is 

sometimes easier to start a new school than to try an educational experiment in an old 

one. But obviously an actual experiment thoroughly carried out would be the only 

satisfactory demonstration of the soundness of the case method of teaching science. 

 The report is published by the Carnegie Foundation as a work of cooperation with 

the great engineering societies, and with the hope that the formulation of these im-

portant enquiries and their discussion may lead to a serious effort on the part of those 

having to do with engineering education to reexamine the curricula of the schools, 

and to approach the problem of their improvement not only from the stand point of 

the teacher, but also from that of the practising engineer and of the employer. 

HENRY S. PRITCHETT, 

President of the Carnegie Foundation. 
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THE Society for the Promotion of Engineering Education, at its Cleveland meeting in 

1907, invited the American Society of Civil Engineers, the American Society of Me-

chanical Engineers, the American Institute of Electrical Engineers, and the American 

Chemical Society, to join the Society for the Promotion of Engineering Education in 

appointing delegates to a “Joint Committee on Engineering Education’ to examine 

into all branches of engineering education, including engineering research, graduate 

professional courses, undergraduate engineering instruction, and the proper relations 

of engineering schools to secondary industrial schools, or foremen’s schools, and to 

formulate a report or reports upon the appropriate scope of engineering education and 

the degree of cooperation and unity that may be advantageously arranged between 

the various engineering schools.” 

 At the Detroit meeting in 1908, a resolution was passed authorizing this Committee 

to invite the Carnegie Foundation for the Advancement of Teaching and the General 

Education Board to appoint delegates. 

 Notwithstanding the appropriation by the American Society of Civil Engineers of a 

sum to assist in the investigation, it was found to be utterly impracticable to ‘carry on 

the work without larger funds, and the Carnegie Foundation was thereupon urged to 

undertake the work on a comprehensive scale. After proper examination, the Founda-

tion generously acceded to this request, and finally selected Professor Charles R. 

Mann to make a careful investigation and report. 

 In presenting Professor Mann’s report, the Committee desire to state that they have 

been closely associated with Professor Mann during his investigations, and have fre-

quently conferred with him in the progress of the work and in the different plans 

adopted for securing information. Many of the conclusions reached have been dis-

cussed at public meetings of educational experts and have had the advantage of ma-

ture judgment and long experience. The views of the whole engineering profession, 

widely scattered throughout the country and representing every phase of professional 

activity and practice, were ascertained. The results of some of these special enquiries 

were published and considered by the engineering societies; they were both interest-

ing and surprising, and are set forth in Chapter XVI of the report. 

 Notwithstanding this varied experience, it was not until the Committee had the ad-

vantage of examining advance copies of Professor Mann’s report that they realized 

the coordination existing between all of the different portions of the investigation, 

and their bearing upon the value of the whole study. 

 We believe that this report possesses particular significance on account of the simple 

and clear treatment of the complicated problems involved. The history of the origin and 

development of the schools is concisely told, and the connection between the curricu-

lum and the changing demands of industrial activities and growth is clearly narrated. If 

the study went no farther — and this is but the threshold of the report — we 
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believe the value of this result alone would go far toward repaying the expense of the 

enquiry, liberal as that has been. 

 Other significant characteristics of the report are found in the discussions of the 

general failure to recognize such factors as “values and cost,” the importance of 

teaching technical subjects so as to develop character, the necessity for laboratory 

and industrial training throughout the Courses, and the use of good English. 

Valuable suggestions are offered for avoiding or reducing present difficulties found 

in many other directions, and all of the problems have been treated in a broad and 

comprehensive spirit. No hard and fast rules are laid down for the government of en-

gineering education. Such a course would inevitably increase the difficulties of future 

advances. Changes must be made from time to time to meet conditions as they arise, 

and any attempts to solve the problems of engineering education must be of so flexi-

ble a nature as to admit of improvements. 

 We now turn to a few of the principal points emphasized in the report. Professor 

Mann has called attention to the waste occurring in educational efforts arising from 

lack of coordination shown in the histories and aims of the technical schools as set 

forth in the first chapter of this study. 

 Another point is the perplexing one of the regulation of admissions. At present six-

ty per cent of those who enter the schools fail to graduate. The importance of limiting 

admissions more strictly to those students who possess some aptitude for engineering 

is demonstrated, and a substitution of objective tests in place of those of a subjective 

character is recommended. 

 Another point emphasized, and one of deep importance, is that of the reorganiza-

tion of curricula which are commonly acknowledged to be much congested, and 

which it is stated will continue, “as long as departments are allowed to act as sole 

arbiters of the content of the courses.” Plans are offered for developing particular 

types of curricula suited to the environment of each school. 

 Emphasis is also given to the necessity for a broader training in the fundamentals 

of science as an equipment for all engineers and forming a sort of “common core” to 

every curriculum. With this broad training in the first and second years the student is 

expected to develop some natural leaning toward a specialty, and then will follow 

vocational guidance in the later stages of his education. 

 Among the questions that will perhaps occur to many interested in the status and 

progress of engineering education, in connection with this report, are—How far will 

the recommendations in the report be applicable to present conditions? and what will 

be the possible influence of this study upon education and practice? These questions 

are of course difficult to answer with precision. We can only form an estimate, based 

upon experience and knowledge of the present chaotic condition of the schools, aris-

ing from world-wide events over which they are called to exercise a powerful influ-

ence. There probably never was a time when the minds of teachers were so intently 

alive and receptive to rapid changes, as at the present moment. This report, made 
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under the auspices of the Carnegie Foundation and with the direct assistance of this 

Committee, will be read and studied all over the country, as soon as it becomes avail-

able. Engineering educators are already partially familiar with the trend of the report.  

They, better than others, know from long experience something of the difficulties in 

establishing standards by which to measure the successes or failures of their efforts to 

provide proper training for engineers. It may take time to convince all that a measure, 

or scale, has been created by the practising engineers of the country by which an es-

timate may be formed of the amount of success in engineering teaching, irrespective 

of the special courses involved. That scale is the improvement of character, resource-

fulness, judgment, efficiency, understanding of men, and last of all, technique, as 

shown by students. These facts have already been published and widely circulated, 

and since they became known there are probably few intelligent educators who have 

not asked themselves the question—Am I so teaching as to produce these results in 

my pupils and in the order of value specified by the engineering profession? It may 

perhaps be considered not unreasonable for this Committee to believe that if portions 

of this study have already proved of value and interest to the schools, there is some 

secure foundation for thinking that the whole report will awaken wide interest be-

cause of the applicability of its results, and that its influence on engineering educa-

tion will be beneficial. 

 In addition to its possible effects on professional educators, we entertain the hope 

that it will also have a wider significance as an important contribution to the general 

cause of education. The publication of the study in the present emergency, when the 

Government is so deeply concerned with so many vital questions connected with ed-

ucational processes, may assist also in the solution of some of the many problems 

arising in connection with vocational training in the different branches of military 

science. 

  American Society of Civil Engineers 
   DESMOND FITZGERALD, Chairman, ONWARD BATES, DANIEL W. MEAD 

  American Society of Mechanical Engineer: 
   F. H. CLARK, FRED J. MILLER 

  American Institute of Electrical Engineers 
   C. F. SCOTT, SAMUEL SHELDON, Secretary 

  American Chemical Society 
   CLIFFORD RICHARDSON, HENRY P. TALBOT 

  American Institute of Chemical Engineers 
   J. R. WITHEOW 

  American Institute of Mining Engineers 
   HENRY M. HOWE, JOHN HAYS HAMMOND 

  Society for the Promotion of Engineering Education 
   D. C. JACKSON, G. C. ANTHONY, C. R. RICHARDS 

Joint Committee on Engineering Education of the National Engineering Societies. 
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THE DEVELOPMENT OF ENGINEERING SCHOOLS IN THE 

UNITED STATES 

DURING the Colonial period industrial production in America was almost wholly 

con fined to agriculture. All forms of manufacture were systematically discouraged 

by acts of Parliament. Iron mining was encouraged, provided the product was 

shipped to England as pig iron; but all tools, implements, gulls, gunpowder, and ma-

chinery used in the colonies had to be purchased in the mother country. This effort to 

limit American production to agriculture and raw materials was one of the chief 

causes of the War of Independence. 

 When the supply of goods from British factories had been cut off by the non-

importation agreement between the colonies (1774), clothing, gunpowder, tools, and 

equipment soon became scarce. An immediate need arose for skilled workers in all 

the mechanic arts. Congress sought to meet this need by urging the establishment in 

every colony of a Society for the Improvement of Agriculture, Arts, Manufactures, 

and Commerce, and by offering premiums for the best achievement in every essential 

line of industry. Enough was accomplished by these means to carry the war, with the 

help of France, to a successful termination. 

 After the war England sought to crush the incipient American industries by selling 

her goods here at lower prices than were charged at home. The Confederation was 

threatened by an industrial domination that seemed no less oppressive than political 

domination. This crisis was met, first, by the formation of numerous societies for the 

promotion of the useful arts, to encourage a spirit of enquiry, industry, and experi-

ment among the members; second, by offering premiums from state treasuries for 

such improvements in the useful arts as might seem beneficial to the country; and 

third, by inviting trained artisans from abroad to settle here and give America the 

benefit of their training. It was on this basis that Samuel Slater, a skilled English 

worker from the Arkwright factory, established at Pawtucket in 1790 the first suc-

cessful textile mill driven by water power. 

 The real beginnings of American engineering were made at this time under the spur 

of a patriotic spirit of industrial independence. In 1793 Eli Whitney invented the cot-

ton gin, which determined the industrial future of the South. Oliver Evans made the 

first machinery for flour mills in 1787, and in 1801 constructed the first high-pressure 

steam engine. Philadelphia equipped its water works with a double steam pump that 

had a capacity of 3,000,000 gallons a day, built by Nicholas I. Rooseveldt in 1801. 

Six years later Robert Fulton made his famous trip up the Hudson in the Clermont. 

The Santee canal in South Carolina was begun in 1786. Work was started on the 

Middlesex canal in Massachusetts and on the canal joining the Schuylkill and the 

Susquehanna rivers in Pennsylvania in 1793. The mechanical inventions were made 
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by Americans who had no formal engineering training; the canals were built by for-

eign trained civil engineers. 

 The effect of the War of 1812 was similar to that of the War of Independence. For 

three years American production was stimulated by being thrown on its own re-

sources. This was followed by a period of stimulation due to foreign competition. By 

181 the exhaustion of the soil because of unscientific methods of agriculture was al-

ready driving the population to seek new laud in the West. There arose a loud cry 

both for instruction in better methods of farming in order that the farms might not be 

deserted, and for better means of transportation to the West. To meet the latter, the 

Erie Canal (1817— was built. This was the first great achievement of American en-

gineering, because the work was done by three self-trained Americans, James Ged-

des, Benjamin Wright, and Charles Brodhead. 

 The demand for scientific information to increase production in agriculture and 

domestic manufactures is voiced in an enormous number of memorials, petitions, and 

committee reports to the various state legislatures. Of these the Report of the Com-

mittee on Agriculture presented by Jesse Buel to the New York State legislature on 

March p29, 18 is perhaps the most complete and expressive. This report urges the 

establishment of a tax-supported school of agriculture along the lines that had proved 

so successful at the Fellenberg School at Hofwyl, Switzerland. Full details of the 

plan, the methods, and the results to be expected are given. It was stated, finally, that 

if the state would undertake the support of the school, the Hon. Stephen van Rensse-

laer would donate the necessary land. The proposal was rejected by the legislature. 

 The following year Mr. van Rensselaer established at Troy the pioneer school of its 

kind in the United States, the Rensselaer Polytechnic Institute. At the beginning a 

new type of instruction was used, but it proved too expensive. In 18 the curriculum 

was revised, a course in civil engineering added, and for a quarter of a century this 

school divided with the West Point Military Academy the honor of supplying men 

with scientific training to meet the country’s need for engineers. Many of the early 

graduates of both schools won renown in designing and building the pioneer high 

ways, bridges, canals, and railroads that led to the conquest of the West. 

 For engineering education the striking features of this period from 1770 to 1830 are 

the gradual and persistent growth of the demand for scientific information for the 

purpose of increasing production, and the scanty attention given to devising ways and 

means of satisfying it. After twenty-three years of keen discussion, the Rensselaer 

Polytechnic Institute, which soon specialized in civil engineering, and the West Point 

Military Academy, which was intended for a totally different purpose, were the only 

two scientific schools in the country. 

 In the fifty years from 1820 to 1870 the industrial conditions in the United States 

were completely reorganized. During this period the percentage of the working popu-

lation in agriculture dropped from 83 to 47.6; while in manufacturing, trade, and 
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transportation it increased from 17 to 31.4. In addition a new class called personal 

service, claiming 18 per cent of the workers, was added and the professional group 

expanded from a negligible per cent in 1820 to 3 per cent in 1870. Thus the advent of 

the steam engine, the railroad, and the reaper reduced the number of farmers by 354 

out of every 1000 workers, increased the number in manufacturing, trade, and trans-

portation by 144, and created the new trade of personal service, giving occupation to 

180 per thousand. The professional group also expanded to include 30 per thousand. 

The number of patents increased in this same period from about two hundred to over 

thirteen thousand per year. 

 A high degree of engineering ability was required to accomplish this industrial rev-

olution. Among the civil engineers who took part were a number who had the ad-

vantage of scientific training either at Rensselaer or at West Point But in the long list 

of mechanical engineers who built the locomotives, the steam engines, the machine 

tools, and the farm machinery, it is difficult to find a single one who had any special 

school training for the work. As science developed and machinery became more and 

more complex, the need of special training for the mechanical engineer became more 

pressing. Hence the period from 1820 to 1870 may be said to have indicated the val-

ue of special training for the civil engineer, and to have defined the need for trained 

mechanical engineers for industrial production. 

 Scattered here and there in the vast mass of pamphlets, petitions, memorials, and 

reports, addressed to various legislative bodies during these years, urging the estab-

lishment of state schools for training in mechanic arts, there appears another concep-

tion that added inspiration to the industrial demand for schools of science. It is to the 

effect that thorough training in science must not only increase production, it must 

also raise agriculture and mechanic arts to the rank of the learned professions like 

theology, medicine, and law. In the Buel report just mentioned it is urged that be-

cause agriculture is the basis of all industry, it should be elevated to the rank of a lib-

eral and fashionable study. The well-known phrase in the Morrill Act—”to promote 

the liberal and practical education of the industrial classes in their several pursuits 

and professions in life “—implies the same conception. Some of the earliest engi-

neering schools were called Industrial Universities. 

 It thus appears that the clearly defined practical demand for training in science as 

an aid to industrial production was blended with a vaguely defined ideal of liberal 

training thru science. These were the forces that gave scope to engineering in Ameri-

ca and compelled the development of the schools. 

 At first this development was very slow. In spite of the widespread recognition of 

the need, the Rensselaer Polytechnic Institute remained for twenty-three years the 

only school of its kind. At length in 1847, thru private benefactions, the Lawrence 

Scientific School was established at Harvard and the Sheffield Scientific School at 

Yale. The University of Michigan also voted that same year to offer a course in civil 

engineering. These were the only additional engineering schools opened before the 
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Civil War, and they had a hard struggle for existence because their aims seemed dan-

gerous to academic traditions. 

 During the Civil War Congress passed the Morrill Act (1862) granting federal aid 

to the several states for founding colleges of agriculture and mechanic arts. State leg-

islatures that had for years been deaf to all appeals now quickly accepted the federal 

grants and voted to create the new type of school. Established colleges caught the 

spirit and added departments of engineering. The four schools of 1860 increased to 

seventeen by 1870, to forty-one by 1871, to seventy by 1872 and to eighty-five by 

1880. Now there are one hundred and twenty-six engineering schools of college 

grade, of which forty-six are land grant colleges operating under the Morrill Act, for-

ty-four are professional schools in universities, twenty are attached to colleges, and 

sixteen are independent. The number of students has increased from fourteen hundred 

in 1870 to thirty-three thousand in 1917, and the annual number of graduates in engi-

neering from one hundred in 1870 to forty-three hundred. Then there were less than 

three graduates per million population, now there are about forty-three per million. 

 The rate of growth of the schools has not been constant. In the decade 1870—80 

the number of graduates per million population increased from three to four. The fig-

ures for the successive decades are: 

 

 

Decade  

ending 

Increase per  

million 

Graduates per  

million per  

year 

1860 1  

1870 3 0.3 

1880 4 0.1 

1890 10 0.6 

1900 17 0.7 

1910 36 1.9 

1916 43 1.1 (6 years) 

 

 It is to be noted that growth was rapidly accelerated from 1870 to 1910, especially 

during the last decade. Since 1910 the growth has been less phenomenal. 

 This increase in the number of graduates indicates another important change in 

school conditions. In 1870 the ratio of graduates to the total number of students was 

one hundred to fourteen hundred, or one to fourteen. In 1915 this ratio was forty-

three hundred to thirty-three thousand, or one to seven and seven-tenths. This indi-

cates that a much larger proportion of the students now take the full course; that is, 

there are relatively fewer stragglers. Back in the ‘70’s the mortality was in many cas-

es as high as 90 per cent, that is, only ten out of every hundred freshmen continued 

thru the whole course. Now the highest mortality among the schools visited is 75 per 

cent, and the average for the twenty schools is 60 per cent. Hence the schools have 

not only increased in size, but their work has been better systematized and standard-

ized. 

 From figures published by Mr. A. M. Wellington in the Engineering News for 1893 

 
1 See page 32. 

 



 238 

   DEVELOPMENT OF ENGINEERING SCHOOLS      7 

and from data presented in the Reports of the United States Commissioner of Educa-

tion it appears that the total number of engineers graduated in the succeeding decades 

was approximately 

   Prior to 1870 866 

   1871—1880 2,259 

   1881—1890 3,837 

   1891—1900 10,430 

   1901—1910 21,000 

   1911—1915 17,000 

 The total number of engineering degrees granted in the United States up to 1915 

has therefore been about 55,000. In 1911 the eleven technical high schools of Ger 

many were graduating engineers at the rate of 1800 per year, and the total number of 

graduates up to that date was 14,215. 

In addition to the hundred and twenty-six engineering colleges just discussed there 

are forty-three degree-giving institutions that pay some attention to engineering work. 

 Of these, eighteen are arts colleges that claim to give “two years of engineering;” 

sixteen advertise engineering courses, but have neither the faculty nor the equipment 

to give them well; four are military schools which occasionally graduate a civil engi-

neer; and five are privately owned institutions which endeavor to teach engineer ing 

to all who apply, without regard to previous academic training, and grant a consider-

able number of degrees on this basis. There are also many excellent schools, like the 

Wentworth Institute, the Lowell Institute, and the Franklin Union in Boston; the Bal-

timore Polytechnic Institute, Pratt Institute, the Bliss Electrical School in Washing-

ton, the Casino Night School in Pittsburgh, the Dunwoodie Institute in Minneapolis, 

the Cogswell Polytechnic in San Francisco, and the numerous technical classes of the 

Young Men’s Christian Association in various places, that teach engineering but 

make no pretense of granting college degrees. These schools are meeting a real need 

in a genuinely effective way without departing from their vocational purpose or con-

fusing the educational situation by granting degrees. 

 The first schools offered only one course—civil engineering. The Massachusetts 

Institute of Technology opened in 1865 with six curricula leading to degrees in civil, 

mechanical, and mining engineering, practical chemistry, architecture, and general 

science. Now the specialized courses at the Institute have increased to fifteen and 

numerous other specialties are offered at other schools. The additions include all 

phases of engineering, such as chemical, sanitary, metallurgical, marine, cement, 

electro chemical, textile, automobile, aeronautical, ceramic, highway, agricultural, 

and engineering administration. The work of the schools has thus increased in scope 

and become more complex. 

 Unfortunately it is not possible to give any even reasonably trustworthy figures as 

to the resources and the equipment of all the engineering schools, because so many of 

them are inextricably bound up with colleges and universities. The United States 
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Bureau of Education still treats engineering under the general heading “Universities, 

Colleges, and Technological Schools.” In a university with several schools it is a very 

perplexing problem to determine how much of the total equipment and expense 

should be charged against any one division such as engineering. In order to secure 

some estimate of the cost and resources of engineering education, as distinguished 

from college education, the following summary of the conditions at the sixteen inde-

pendent schools that devote all their resources to engineering alone is presented. The 

figures are from the Report of the United States Commissioner of Education for 1916. 

 In the sixteen independent schools there were, during the year 1914-15, 762 in-

structors and 6807 students; or on the average one instructor to nine students. The 

total expenditure for the year was $2,348,000, or an average of $345 per student. The 

plants were valued at $14,047,000, the equipment at $3,022,000, and they had en-

dowments amounting to $12,985,000. 

 These sixteen schools are widely distributed over the country, the number of in-

structors varies from 5 to 290, the number of students from 26 to 1816, the value of 

the plant from $98,000 to $6,800,000, the endowment from nothing (at state schools) 

to $3,236,000, the value of equipment from $51,000 to $478,000, and the cost per 

student year from $204 to $1333. Seven are state institutions and nine are on private 

foundations. It is therefore not unreasonable to assume that the conditions that main-

tain for the 6807 students of these schools are typical of conditions for the 33,000 

students in all schools. On this assumption, the total annual expenditure for the engi-

neering instruction of 33,000 students at $345 per year is $11,385,000. On the same 

assumption the total value of the plants used for this purpose is about $68,000,000, 

the equipment is worth about $15,000,000, and the endowment is about $63,000,000. 

Altho these figures are merely estimated, they are as trustworthy as any that are 

available under present conditions. 

 Since the engineering schools entered upon their remarkable development fifty 

years ago the conditions of industrial production have changed, new fields of engi-

neering have been developed, the professional ideals of the engineer have grown 

more definite, laboratory work has won recognition as an essential element of all in-

struction in science, and educational theory and practice have been brought within the 

range of scientific test. Under these conditions numerous fundamental questions con-

cerning engineering education have of necessity emerged. Do we need fewer or more 

schools? Is the curriculum too long or too short? Should the engineering school be 

made a graduate professional school? What are the present demands of science, of 

industry, and of education? How well are the schools meeting these demands? What 

changes, if any, seem desirable? 

 The answers to questions like these are at present both vague and unconvincing. 

This study endeavors to define a number of the more important problems of engineer-

ing education, and to suggest policies and methods that promise to be fruitful in 

working toward more satisfactory solutions. 
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CHAPTER II 

THE AIMS AND CURRICULA OF THE EARLY SCHOOLS 

ENGINEERING schools are so obviously a result of the needs of industrial production 

that the conceptions on which they are founded are necessarily much the same for all. 

Hence three schools—the Rensselaer Polytechnic Institute (1824), the University of 

Illinois (1867), and the Massachusetts Institute of Technology (1865)—are here se-

lected as typical expressions of the general movement, because the documents     

relative to the founding of these institutions state their ultimate aims with striking 

clearness.1 

 From the evidence presented in the History of the Rensselaer Polytechnic Institute 

it appears that in planning his school Mr. van Rensselaer was strongly influenced by 

two foreign institutions: namely, the Royal Institution of Great Britain, which was 

established by Count Rumford in 1799 as an offshoot of the Society for Increasing 

the Comforts of the Poor, and was intended to facilitate the general introduction of 

useful mechanical inventions; and the Fellenberg School at Hofwyl, Switzerland, 

which sought to educate the children of the poor thru manual work in accordance 

with methods devised by Pestalozzi. As stated in the official notice of the establish-

ment of the school, its aim was to furnish instruction “in the application of science to 

the common purposes of life,” in order to train men to teach “the sons and daughters 

of farmers and mechanics. . . and who will be highly useful to the community in the 

diffusion of a very useful kind of knowledge, with its application to the business of 

living.” Prior to 18 no mention of professional engineers is made beyond the remark 

in the Buel report (page 5), that because agriculture is the basis of all industry, the 

state should elevate it “to the rank of a liberal and fashionable study.” 

 The educational conceptions of the land grant colleges developed gradually during 

the quarter century from 18 to 1850. They are expressed in numerous memorials to 

the Federal Congress, petitions to state legislatures, and resolutions of societies for 

the promotion of agriculture and the mechanic arts. An analysis of the more im-

portant of these documents and of the debates in Congress on the several Morrill acts 

has just been published by the Carnegie Foundation for the Advancement of Teach-

ing in Dr. I. L. Kandel’s Bulletin on Federal Aid for Vocational Education. These 

conceptions reached their fullest expression in the meetings of the Illinois Industrial 

League in 1851—53. A very complete statement of the aims of the new schools is 

made in a memorial sent by the league to the state legislature in l852.3 

 
1 Cf. P. C. Ricketts: History of the Rensselaer Polytechnic Institute, New York, Wiley, 1895; 

W. B. Rogers: Objects and Plan of an Institute of Technology, Boston, 1861; E. J. James: The 

Origin of the Land Grant Act of 1862, University of Illinois Bulletin, vol. viii, No. 10, No-

vember, 1910. 

2 Ricketts, loc. cit., pages 6-80. 

3 E. J. James, loc. cit., pages 90-95. 
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 In this document the memorialists state that as members of the industrial classes 

personally engaged in agricultural and mechanical pursuits they have forced on their 

attention constantly the fact that from one-third to one-half of the products of the 

state are annually sacrificed because of the worker’s ignorance of scientific laws and 

methods of work. This appalling loss might be prevented if there were established a 

suitable industrial university to teach what is already known and to carry on investi-

gations of new problems. To secure these ends, it is necessary to establish industrial 

universities which shall give the industrial classes a thorough scientific and practical 

training equivalent in all respects to the literary training already given so success ful-

ly and abundantly as preparation for the so-called learned professions. 

 The educational aims and methods required for this purpose were stated forcefully 

by Professor J. B. Turner in two addresses which are reprinted in President James’s 

pamphlet. In these Professor Turner makes clear that the conventional forms of in-

struction in literary colleges are not suitable for industrial training. Book learning 

alone does not suffice, but must be supplemented by a study of things. The former 

produces “laborious thinkers,” while industry needs “thinking laborers.” Nor are 

schools that teach the application of science to the art of killing men fitted to teach 

scientific methods of feeding, clothing, and housing men. A special type of instruc-

tion is needed, — one that analyzes practical problems and sets the student “to ear-

nest and constant thought about the things he daily does, sees, and handles, and all 

their connected relations and interests.” Men secure true discipline best by “contin-

ued habits of reading, thought, and reflection in connection with their several profes-

sional pursuits in after life.” In this way schools can “teach men to derive their men-

tal and moral strength from their own pursuits.” There are “more recondite and pro-

found principles of pure mathematics immediately connected with the sailing of a 

ship, or the moulding and driving of a plow, or an axe, or a jack-plane than with all 

three of the so-called learned professions together,” and these should be made objects 

of study in order to “extend the boundaries of our present knowledge in all possible 

practical directions.” 

 It is to be noted that the aim of the founders of the “Illinois Industrial University” 

was increased production and professional recognition. The conception of the need 

and the methods of training farmers and artisans for increased production in such a 

way as to elevate their callings to the rank of professions is, however, much more 

definitely expressed than in the case of Rensselaer. The need for expanding the 

bounds of knowledge by scientific investigation has also been perceived. 

At the Massachusetts Institute of Technology the aims and methods were defined by 

its first president, William B. Rogers. The seeds of the conception of a polytechnic 

school were planted in him during his first experience in teaching apprentices at the 

Mechanics Institute in Baltimore in 1827.  The growth of the plan was fostered by his 

share in the preparation, in 1837, of a petition for the Franklin Institute to the Penn-

sylvania State Legislature praying for the establishment of a state school of 
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applied science, and by his formulation for his brother in 1846 of a “Plan for a Poly-

technic School in Boston.”1 

 The final statement of his conceptions was printed in his Objects and Plan of an 

Institute of Technology, Boston, 1861. In this pamphlet, which was issued to attract 

support for the enterprise, the argument is this: “Material prosperity and intellectual 

advancement are felt to be inseparably associated” (page 1). But material prosperity 

requires intelligence in industrial production, and this in turn demands “that systemat-

ic training in the applied sciences, which can alone give to the industrial classes a 

sure mastery over the materials and processes with which they are concerned. Such a 

training, forming what might be called the intellectual element in production, has, we 

believe, become indispensable to fit us for successful competition with other nations 

in the race of industrial activity, in which we are so deeply interested” (page 20). 

Such a training should not only impart knowledge and develop habits of exact 

thought; it should also “help to extend more widely the elevating influences of a gen-

erous scientific culture.” There should also be included “a department of investiga-

tion and publication, intended to promote research in connection with industrial sci-

ence” (page 6). 

 It appears from the foregoing pages that from the beginning the engineering 

schools have, had a clear conception of their functions. They themselves understood 

that their ultimate aim was increased industrial production, and that their special con-

tribution to this end was systematic instruction in applied science. In addition they 

believed that if this instruction were given with the proper spirit, engineering would 

become a learned profession and scientific research a recognized necessity. 

 The means employed at Rensselaer in 1824 to secure these ends were novel and 

unique. The first curriculum required one year for its completion, and was divided 

into three terms. School opened the last week in July with an “experimental term,” 

during which the students gathered botanical, mineralogical, and zoological speci-

mens, visited shops and factories near the school, and discussed with the class the 

significance of what they had collected and observed. In addition each student gave a 

number of lectures on chemistry and natural philosophy, fully illustrated by experi-

ments performed with his own hands. 

 During the second term, from the end of November to the first of March, the stu-

dents reviewed in class the sciences taught in the fall, and in addition studied rheto-

ric, logic, geography, and mathematics. The spring term lasted from the first week in 

March to the end of June. For six weeks the work consisted of lectures by the stu-

dents on experimental philosophy, chemical powers, substances non-metallic, metal- 

bids, metals, soils, and mineral waters. For the remaining nine weeks the students 

were exercised in the application of the sciences to practical projects and in the study 

of engineering works in the neighborhood of the school. 

 

1 William Burton Rogers: Life and Letters, vol. i, pages 420-427. 
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 In the catalogue published in 1828 the term “civil engineering” occurs for the first 

time, as one of the topics on which the senior professor would lecture. The catalogue 

for 1831—32 states that the second sub-term would be devoted to “Trigonometry, 

Navigation, and the Elements of Civil Engineering.” In 1835 the legislature was peti-

tioned to amend the charter of the school so as to permit the addition of a “depart-

ment of mathematical arts, for the purpose of giving instruction in engineering and 

technology.” Graduates of this department were to receive the degree of Civil Engi-

neer. This degree was awarded for the first time in the United States to four members 

of the class of 1835. 

 It will be noted that during the first ten years the Rensselaer Institute evolved from 

a school of natural science designed to train teachers able to spread among farmers 

and artisans scientific information that would assist them in production, into a school 

of engineering and technology. The changes in curriculum that accompanied this 

evolution are striking. The full program for 1835 is printed in President Rickett’s 

History. A comparison of this curriculum with the first one shows that the “experi-

mental term” at the beginning has disappeared. The school year begins in November 

with class work in “practical Mathematics, Arithmetical and Geometrical,” combined 

with “extemporaneous speaking on the subjects of Logic, Rhetoric, Geology, Geog-

raphy, and History,” and “Lectures on National and Municipal Law” by the senior 

professor. The second term of twenty-four weeks devotes eight weeks to practice in 

the use of instruments; eight weeks to study of the theory of mechanical powers, 

bridges, arches, canals, etc.; four weeks to calculations of the quantity of water per 

second supplied by streams with reference to their use for various practical purposes; 

and four weeks to inspection of “mills, factories, and other machinery or works 

which come within the province of mathematical arts.” 

 This evolution of the curriculum was carried one step farther in 1849, when the 

director, Professor B. Franklin Greene, went abroad and made a careful study of 

French technical schools. On his return the course at Rensselaer was lengthened to 

three years and a new curriculum adopted. This curriculum is a combination of the 

curricula of L’Ecole Centrale des Arts et Manufactures, which plans to train civil en-

gineers, directors of works, superintendents of factories, and the like; and L’Ecole 

Polytechnique, which prepares for certain government technical institutions. The first 

half of the curriculum was intended to lay the general scientific basis of all engineer-

ing, and the second half to develop proficiency in some special line. This curriculum 

is given here in full along with the first three years of the first curricula of the Massa-

chusetts Institute of Technology (1865) and the University of Illinois (1867). 
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RENSSELAER      MASSACHUSETTS INSTITUTE   UNIVERSITY OF ILLINOIS 

First Year 
Algebra, geometry,  

  trigonometry 

Algebra, solid geometry,  

   trigonometry 

Algebra, geometry,  

   trigonometry 

General physics  Elementary mechanics  

Geometrical drawing Drawing — mechanical and 

  freehand 

Descriptive geometry  

   and drawing 

English English English or 

Foreign language Foreign language Foreign language 

Surveying Chemistry — inorganic History 

Botany  Botany 

Second Year 

Analytics calculus Analytics calculus Analytics calculus 

General physics Physics  

Chemistry Chemistry  

Descriptive geometry,  

   machine drawing 

Descriptive geometry, machine  

   and freehand drawing 

Descriptive geometry,  

   drawing 

Topographical and hydro- 

   graphical surveying 

Surveying—plane Surveying 

English English  

Foreign language Foreign language Foreign language 

Mineralogy Astronomy, navigation  

Zoology   

Geology   

Third Year 

Mechanics Calculus, analytic and applied  

   mechanics 

Calculus, analytic  

   mechanics 

Practical astronomy Spherical astronomy Descriptive astronomy 

Geodesy—trigonometrical,  

   railroad and mine surveying 

Surveying — roads,  

   railroads and canals 

Railroad surveying 

   

Descriptive geometry — 

   perspective, topographical  

   drawing, stereotomy 

Descriptive geometry —  

   masonry and carpentry 

Shades, shadows, perspective 

Industrial physics   

English Physics Physics 

Practical geology English  

Physical geography Drawings, plans, etc.  

Machines Foreign languages Chemistry 

Constructions —theory of  

   structures, bridges,  

   hydraulic works, railways 

 

Computation of earth  

   work and masonry 

 

Mining   

Metallurgy   

Philosophy of mind Hydrographical surveying  

 The curricula at the Massachusetts Institute and the University of Illinois did not 

evolve thru a period of years. They were simply adopted in the form given. How 

much influence the Rensselaer curriculum had in shaping the others it is impossible 

to say. Internal evidence suggests that this influence was large. 
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 A comparison of these three curricula indicates that the general plan is very much 

the same in all. The third year at Rensselaer contains some of the technical courses 

that appear in the fourth year of the other two schools. But they all agree in placing 

mathematics, drawing, descriptive geometry, physics, and chemistry before the work 

in applied science. In other words, they all sought to meet the demand for increased 

production by first teaching the necessary theoretical science and then showing how 

to apply it. This was the plan in the French schools, and it was transplanted without 

change to America. It remained and still is the prevailing conception underlying the 

curricula of our engineering colleges. 

 But tho these three curricula agree in general plan, the methods of handling the 

work in the three schools were quite different. The system of instruction by the stu-

dents, which has already been described, had by 1865 given place at Rensselaer to 

the system now used there of interrogations and blackboard demonstrations. Field 

trips and the observation of industrial processes in action in neighboring shops had 

been discontinued. These changes were made necessary by the increased attendance 

at the school. 

 At the University of Illinois the instruction in theory was given by lectures and rec-

itations from textbooks combined with the use of plates and models. This was in a 

way coordinated with shopwork, in that machinery planned in the drafting room was 

actually constructed in the shops. Much of the early equipment, including an eight 

horse power steam engine, was constructed by the students in this way. Opportunities 

for manual labor for pay were offered the students, and many of them earned enough 

to meet their expenses by making furniture and apparatus in extra hours of shopwork. 

A chemical laboratory was part of the earliest equipment. 

 At the Massachusetts Institute there was no shopwork until 1877. The lecture- reci-

tation method of instruction was used in all class work, but this was supplemented by 

laboratory work in physics and mechanical engineering. The first laboratory for un-

dergraduate instruction in physics was opened here by Professor E. C. Pickering in 

1869. The organization and many of the experiments he devised are still used in 

physics laboratories. The teaching was necessarily very like that in other colleges 

because all the professors had been trained in existing schools devoted mainly to lit-

erary studies. 
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THE STRUGGLE FOR RESOURCES AND RECOGNITION 

THE Rensselaer Institute began work in 1824 in a rented house with several hundred 

dollars worth of equipment, all of which was supplied by the Hon. Stephen van Rens-

selaer. There were 25 students the first year, each of whom paid $36 tuition, and 

these fees were paid to the two professors as their remuneration. During the first eight 

years the founder paid about half the cost of maintenance—a total of $22,000. By 

that time the value of the equipment had increased to $4000. For twenty years work 

was conducted in rented quarters. Finally, in 1844, a house and lot were given the 

school by the city of Troy on condition that a fund equal to the value of the property 

be raised for maintenance. For this purpose Mr. William P. van Rensselaer gave 

$6500, and $1150 was raised by subscription to build a chemical laboratory. That 

year there were 75 students, the tuition was $40 a year, and the total value of the 

plant was appraised at $15,850. 

 In 1850 the course was lengthened to three years and the tuition raised to $60 a 

year. Tuition was increased to $100 in 1857, to $150 in 1864, and to $200 in 1866, at 

which figure it still remains. In 1851 the state gave the institution $3000 and ten 

years later $3750, for general purposes. After the fire that destroyed the buildings in 

1862, the state gave $10,000 to help rebuild, and this was increased by a further grant 

of $15,000 in 1868. From 1846 to 1854 the school was classed as an academy by the 

state Board of Regents and as such received $744 in all as its share of the literature 

moneys distributed to the academies of the state. These figures represent the entire 

support granted by the state, a total of $32,494. 

 From these facts it appears that prior to the beginning of the Civil War this institu-

tion owed its existence almost wholly to private benefactions and to the devoted ser-

vices of its staff, whose enthusiasm and self-sacrifice made the continuance of the 

work possible with meagre equipment and slender resources. The experience of other 

schools of this period was similar. At Yale the scientific school was started in 1847, 

when Professors Silliman and Norton opened a laboratory for practical instruction in 

the application of science to the arts of agriculture. Professor Norton was permitted to 

hold the chair of agricultural chemistry on condition that he should draw no salary; 

this entire enterprise was housed mainly in the chapel attic until 1860, when Joseph 

E. Sheffield supplied the funds needed to place it on a permanent footing. The Law-

rence Scientific School at Harvard was more fortunate in that its early financial sup-

port was assured by the gift of Mr. Abbott Lawrence in 1847. The engineering de-

partment at the University of Michigan was the one state-supported school of engi-

neering before 1860, but no engineering degrees were granted there until 1861. 

 Science and engineering in America owe a great deal to the Rensselaer Polytechnic 

Institute. Founded at a time when the great masses of the people knew little about 
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science and cared less, it quietly and persistently trained teachers and engineers who 

diffused scientific information and built many of the railways, roads, and bridges that 

were essential to the success of the industrial evolution By 1860 it had graduated 318 

men, while from the West Point Military Academy, for many years the only other 

school for scientific training, but 200 of the graduates entered engineering before 

1860. The Lawrence School at Harvard graduated 49 men before the Civil War, in 

the face of an unconcealed disdain on the part of the regular faculty. 

 It is a very striking fact that before the Civil War so little progress was made in the 

establishment of schools of science. Altho there were many far-seeing men who 

urged the need of them in memorials, addresses, and petitions to legislatures, there 

was little action before 1860. But a great change occurred during the strife and tur-

moil of battle. Congress passed the Morrill Act in 1862, thereby creating in each state 

a fund for the establishment of a college “for the liberal and practical education of the 

industrial classes in their several pursuits and professions in life.” In 1861 the Massa-

chusetts State Legislature granted a charter and a tract of land to the Massachusetts 

Institute of Technology, and in four years over $100,000 had been raised by subscrip-

tion for a building, and the school had opened for work. The School of Mines at Co-

lumbia (1864), the Thayer School at Dartmouth (1867), Cornell University (1867), 

the Worcester Polytechnic Institute (1868), were established at this time. In addition 

the states of Illinois, California, Iowa, New York, New Jersey, Maine, Michigan, 

New Hampshire, Pennsylvania, Tennessee, Vermont, and Wisconsin accepted the 

terms of the Federal land grant of 1862 before 1870. 

 But altho after the Civil War money began to flow toward the support of technical 

education, the financial struggles of the schools were by no means ended. At the 

Massachusetts Institute in 1868, in spite of stringent economy, the total income of the 

school was $34,230 and the total expense $42,650. The deficit had to be made up by 

subscription among the friends of the project. At this time the tuition was $100 for 

the first year, $125 for the second, and $150 each for the third and fourth. But the 

total cost per student per year was $250. At Harvard it was then $180, at Yale $126, 

at Columbia $115, at Brown $178, at Amherst $80, and at the University of Pennsyl-

vania $42. At the new Illinois Industrial University, with a total income in 1869 of 

$35,000 and 156 students, it was $224, and there were no tuition fees. In other words, 

the schools soon found that instruction in science was not only new, but more expen-

sive than regular college teaching, because of the relatively high cost of laboratory 

work and the small number of students. 

 In the thirty years from 1870 to 1900 the schools slowly grew stronger and more 

secure. The plant at Illinois increased in value from $186,000 in 1870 to $1,300,000 

in 1900, or at the average of $37,000 a year. At the same time the annual income in-

creased from $35,000 to $483,000, or at the average rate of about $15,000 a year. 

The student increase during this period was from 156 to 1756, the average rate being 

53 per year. 
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 The complete figures for the typical schools, compiled from the early records and 

the Reports of the United States Bureau of Education for 1900 and 1916, are given in 

the following table: 

VALUE OF PLANT 

    Increase 

 

 Increase  per year 

Ratio 

 1870 1900 1916 1870-1900 1900-16 I 
1870-1900 

II 
1900—16 

II/I 

 

ILLINOIS 

 

 

$186,000 

 

$1,300,000 

 

$5,152,000 

 

$1,114,000 

 

$3,852,000 

 

$37,000 

 

$240,000 

 

7 

MASS. INST. 400,000 911,000 6,778,000 511,000 5,867,000 17,000 367,000 22 

RENSSELAER 50,000 240,000 1,521,000 190,000 1,281,000 6,300 80,000 12 

 
ANNUAL INCOME 

 

ILLINOIS 

 

$35,000 

 

$483,000 

 

$2,209,000 

 

$448,000 

 

$1,726,000 

 

$15,000 

 

$108,000 

 

7 
 

MASS. INST 

 

45,000 

 

348,000 

 

817,000 

 

303,000 

 

469,000 

 

10,100 

 

29,300 

 

3 

 
RENSSELAER 

 
19,000 

 
49,632 

 
225,000 

 
30,000 

 
175,000 

 
1,000 

 
11,000 

 
11 

 

NUMBER OF STUDENTS 

 
ILLINOIS 

 
156 

 
1,756 

 
5,523 

 
1,600 

 
3,767 

 
53 

 
235 

 
4 

 

MASS. INST. 

 

167 

 

1,178 

 

1,816 

 

1,011 

 

638 

 

34 

 

40 

 

1.2 
 

RENSSELAER 

 

125 

 

250 

 

545 

 

125 

 

295 

 

4 

 

18 

 

4.5 

 

 From these figures it appears that the resources and attendance increased steadily 

but moderately during the period from 1870 to 1900. Since 1900 the development has 

not only been rapid; but the buildings, equipment, and expenditures have increased 

much more rapidly than the number of students. Because of this the total expenditure 

per student per year has practically doubled since 1900, and every institution in the 

country is finding it yearly more difficult to live within its income. 

 The above figures, while as trustworthy as any that can be obtained, are not accu-

rate to within 5 per cent or so. They, however, indicate the general drift clearly 

enough. In the decade from 1871 to 1880 private benefactions to education averaged 

$6,000,000 a year. In the past decade they have averaged $26,000,000 a year. In like 

manner total expenditures for education in the United States have increased from 

about $75,000,000 a year in 1870 to $240,000,000 in 1900 and to nearly a billion in 

1916. The yearly increase up to 1900 was about $5,500,000; since then it has been 

$48,000,000, or nine times as great. 
 This growth of the engineering schools in size and resources has been closely par- 
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alleled by the development of the engineering profession and of the manufacturing 

activities of the country. As has been pointed out (page 5), the elevation of the me-

chanic arts to the rank of a learned profession has always been one of the conscious 

aims of instruction in applied science. This aim was very vague indeed when the 

Rensselaer Polytechnic Institute was founded, for at that time there was no engineer-

ing profession to define professional standards as a guide to the schools. 

 The first effort toward a more specific definition of the profession was made in 

1839 by Benjamin Latrobe, John F. Houston, Benjamin White, and others, when they 

tried to establish a national society of civil engineers. This effort was not successful. 

The present American Society of Civil Engineers was established in 1852 and held its 

first national convention in 1869. The mining engineers attained this same degree of 

professional consciousness in 1872, when the American Institute of Mining Engi-

neers was founded. The American Society of Mechanical Engineers was established 

in 1883, and the American Institute of Electrical Engineers in 1884. 

 The Census Reports are no more satisfactory concerning engineering than are the 

Reports of the United States Bureau of Education (page 17). The Report for 1850 

lists 512 civil engineers. In 1860 the corresponding entry is 27,437 civil and mechan-

ical engineers, with a footnote stating that this includes stationary engine and loco-

motive engineers. In 1870 the heading is “electricians, engineers (civil, etc.), and sur-

veyors 7,374.” Under the heading the number in 1880 is given as 8261; in 1890 it is 

43,239, and in 1900 it has increased to 93,956. The several branches of the profession 

are recognized for the first time in the 1910 report, which enumerates 14,514 engi-

neers (mechanical), 6930 mining engineers, 52,033 civil engineers and surveyors, 

and 135,519 electricians and electrical engineers—a total of 208,996. Probably not 

more than 80,000 of these engineers enumerated by the census could qualify for 

membership in any of the professional societies mentioned, which now have about 

80,000 members. Recently a number of new engineering societies have been orga-

nized, representing cement, automobiles, electric light, electric traction, etc. The total 

membership in all the societies having headquarters in the Engineering Societies 

Building in New York is about 53,000. 

 The rate of growth of the engineering societies is shown in the following table: 

  Member ship Increase 

 

 Increase  per year 

Ratio 

 Founded 1900 1916 Origin-1900 1900-16 I 

Origin-1900 

II 

1900—16 

II/I 

 

Civil Engineers 

 

1852 

 

2227 

 

7909 

 

1984 

 

5682 

 

66 

 

355 

 

5 
 

Mining Engineers 

 

1872 

 

2661 

 

5234 

(since 1870) 

2661 

 

2573 

 

95 

 

161 

 

1.7 
 

Mechanical Engineers 

 

1883 

 

1951 

 

6931 

 

1951 

 

4980 

 

114 

 

311 

 

2.8 

 
Electrical Engineers 

 
1884 

 
1273 

 
8212 

 
1273 

 
6939 

 
80 

 
434 

 
5 
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 These figures indicate that the professional societies, like the schools, have grown 

much more rapidly since 1900. This probably does not result so much from mere in-

crease in the total number of engineers in the country, as from an awakening and ex-

pansion of professional consciousness. The establishment of the Engineering Founda-

tion in 1915, the cooperation of the engineering societies with the National Academy 

of Science in the National Research Council, the bill to charter an American Acade-

my of Engineers introduced into Congress in 1917, and the recent discussion of the 

status of the engineer also indicate that the engineers have only just reached that state 

of professional consciousness where they are able to define their status among the 

professions. This definition is now in process of formulation; and until it is an-

nounced, it is unreasonable to expect the statisticians at the Census Bureau or the Bu-

reau of Education to distinguish clearly between the professional civil engineer and 

the surveyor or between the electrician and the electrical engineer. 

 The part played by the colleges in this development of professional spirit may be 

estimated from the fact that the various schools had graduated 866 engineers up to 

1870, or less than one-ninth of the 7374 practising engineers in the country at the 

time. As indicated on page 7, the total number of engineering degrees granted in the 

United States has been approximately 55,000. Since a number of these graduates 

have died and perhaps a fifth of them have gone into other lines of work, it is safe to 

say that there are not more than 40,000 graduates of American engineering colleges 

in engineering practice to-day. If the number of professional engineers is approxi-

mately 80,000, it follows that now possibly about one out of every two is a college 

graduate. Since this ratio was only one in eight or nine in 1870, the magnitude of the 

contribution of the schools to the development of the profession is obvious. 

 The growth of the second powerful influence on the development of the engineer-

ing schools—the manufacturing industries—is indicated by the following facts: The 

total value of manufactured products in the United States in 1870 was 3400 million 

dollars. In 1900 the value was 13,000 million dollars, and in 1916 it was 32,200 mil-

lion dollars. The increase in value of manufactured products for the period 1870— 

1900 was therefore 9600 million dollars, or at the average rate of 320 million a year. 

In the sixteen years from 1900 to 1916 this increase was 18,200 million dollars, or at 

the average rate of 1138 million a year. Hence, like the schools and the professional 

societies, the manufacturing industries have developed much more rapidly in the 

twentieth century than in the nineteenth. 

 The attitude of these industries toward the college-trained man is indicated by the 

fact that of the 4622 technically trained men now employed by 98 representative 

manufacturing establishments 1992, or 43 per cent, have engineering degrees. The 

highest ratio is in the field of metal refining, where 87 per cent of the technical men 

are college graduates. The lowest ratio is in the automobile trade, where only 49 out 

of 186, or 24 per cent, are college-trained men. In shipbuilding the ratio is 48 per 

cent, 359 out of 735, and in machinery and machine tools it is 41 per cent, 836 out
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of 2043. In response to the question “Do you employ men graduated from engineer-

ing colleges in preference to men trained mainly thru practical experience?” 60 out of 

120 firms answered “yes;” 40, or one-third of the number, answered “no;” and 20, or 

one-sixth of the whole number, expressed no preference. 

 It is difficult to interpret the interplay that has been going on among industry, sci-

ence, and engineering. At the close of the Civil War science had but scant recognition 

either in educational institutions or among the masses of the people. Now it has as-

sumed a commanding position because of the transformations it has wrought in the 

daily life of every one thru its varied and fruitful inventions. In this development 

there has been no regular procedure, no well-defined organization. It has been a mat-

ter of independent action and individual effort. Sometimes it was the college profes-

sor of science, pure or applied, sometimes it was the inventor or the professional en-

gineer, and sometimes it was the manufacturing industry that took the initiative, con-

ceived the new idea, or made the new discovery, and sought the assistance of the oth-

ers in realizing it in practice. Now evidences are multiplying to show that the time 

has come for a clearer definition of the relations among research, instruction, engi-

neering practice, and industrial production. How to coordinate these elements most 

effectively is a large and pressing problem. Further consideration of the meaning of 

this problem to the engineering schools is given in Chapter XII. 
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CHAPTER IV 

 

THE DEVELOPMENT OF THE ENGINEERING CURRICULUM  

INTO ITS PRESENT FORM 

IN the fifty years that have elapsed since the curricula described in the second chap-

ter were established a number of striking changes have taken place. The general na-

ture of these changes is indicated in the following tables, which give the data for two 

of the schools selected as typical. The Rensselaer Polytechnic Institute has been omit-

ted because its early programs do not give the number of hours per week assigned to 

the various subjects. 

 
ENTRANCE REQUIREMENTS 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

 

  1870 1914 

 
Arithmetic 

Geography 

Algebra to quadratics Algebra A 160 hours 
  Algebra B 160 hours 

Plane geometry Plane geometry 760 hours 

  Solid geometry 160 hours 
English grammar English composition 

  English literature 

  Physics 
  French 240 hours 

  German 240 hours 

  Electives 
 

UNIVERSITY OF ILLINOIS 

Arithmetic 

Geography 

Algebra to quadratics Algebra A 1 unit1 

  Algebra B 1 unit 
Plane geometry Plane geometry 1 unit 

  Solid and spherical geometry  ½ unit 

English grammar English composition 1 unit 
  English literature 2 units 

United States history Physics 1 unit 

  Electives 8 units 
 

In 1867 admission was by examination. Graduation from high school was not men-

tioned, the sole requirement being ability to meet the tests and an age limit of 16 

years.  Admission is still by examination at the Massachusetts Institute of Technolo-

gy, while at the University of Illinois it is now mainly by certificate from accredited 

high schools. 

 It will be noted that arithmetic and geography are no longer required, probably be-

cause it is assumed that they have been satisfactorily completed in the grammar 

school. 

 
' The unit is generally defined as one-quarter of a year's work in a secondary school. 
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The number of examinations (or subjects required) has increased from 5 or 6 to 8 or 

10. The amount of algebra, geometry, and English required has been increased by 

from 50 to 300 per cent. The content and methods of instruction in the various high 

school units have also been carefully defined and standardized by the College En-

trance Examination Board, the National Educational Association, and several other 

associations in which colleges and secondary schools are represented. 

 These changes are the direct result of the development of the public high schools. 

Altho the average age of entrance to college has remained constant at about 19 years, 

the present freshman has had more instruction and more highly systematized instruc-

tion in more subjects than was possible before the recent striking development of 

secondary education. 

 At present all but 4 of the 126 engineering colleges require at least 14 units for ad-

mission without condition. These four are tax-supported institutions in states where 

the public school systems have not developed to the point where the requirement of 

four years of preparatory work would be justified. They are raising their requirements 

as fast as local conditions permit. Forty of the schools still advertise that they accept 

students with two or three units of conditions. All admit either by certificate from 

accredited high schools or by examination excepting the Massachusetts Institute and 

the Sheffield Scientific School, which admit by examination only. West of the Alle-

ghenies entrance examinations are rare. 

 The number of units specifically prescribed for admission varies from 5 at the 

North Carolina College of Agriculture and Mechanic Arts, to 13 at Yale and George 

Washington University, or even to 14 at Notre Dame University. Half specify 10 or 

less, and half specify more than 10. All agree in demanding English and mathemat-

ics, the amounts varying from 2 to 4 units. In English nine-tenths of the schools re-

gard 3 units as standard, while in mathematics six-tenths have settled upon 3 as 

standard, half of the remainder requiring more and half less. History is specifically 

required by 71 per cent of the schools and one science (physics or chemistry) by 73 

per cent. One- third, mostly land grant colleges and state universities, require no for-

eign languages for admission. 

 The nature of the changes in the distribution of time in the curriculum itself is indi-

cated by the following typical cases. The unit is the semester-hour. 

 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Mechanical Engineering 

         Per cent of Total Time 

      1867 1914   1867        1914 

Foreign languages       81     7 
English        14     8 

History          3     4 

General studies         0   12 
         48   31  31          18 
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                     Per cent of Total Time 

      1867 1914  1867 1914 
Mathematics 16 17 

Chemistry   8 17 

Physics 12 14 
Geology   2   0 

Mechanics   4 13      27    36 

 
Drawing and descriptive geometry 49 17 

Mechanical engineering 10   0 

Machinery and motors   4   0 
16 specialized courses in M. E.   0 63 

  63 80       42     46 

 

 The most notable changes in the mechanical engineering curriculum of the Massa-

chusetts Institute of Technology, as noted above, are: 

 The reduction of the foreign language requirement from 31 to 7 credit hours. This 

is partly a result of better language work in preparatory schools. 

 The apparent reduction of the English requirement from 14 to 8 credit hours. In 

interpreting this fact it must be noted that in 1867 the study of political economy, the 

United States Constitution, and some history of civilization were included under the 

head of English. Subjects like these are now provided for in the 12 credit hours of 

general studies. On the whole, however, the time given to these “humanities” has 

been reduced from 31 per cent to 18 per cent of the total. 

 In the science group, chemistry has increased from 8 to 17 credit hours, and me-

chanics now gets 13 instead of 4. This latter increase is noteworthy because the fun-

damental principles of mechanics have not changed materially in the past fifty years. 

Some of the additional time is devoted to laboratory work in applied mechanics, 

strength of materials, etc. Mathematics and physics retain practically the same time 

allowance. The time given to science has in general increased from 27 per cent to 36 

per cent. 

 The technical subjects have been given more time (from 63 to 80 credit hours), alt-

ho their percentage has increased but little (42 to 46). They have, however, been spe-

cialized to a high degree. The only technical subjects mentioned in the program for 

1867 were drawing (47 hours), mechanical engineering (10), machinery and motors 

(4), and stereotomy (2). To-day the mechanical engineer must take drawing (17 

hours), heat engineering (7), mechanism (6), boiler design (8), engineering laboratory 

(3), electrical engineering (7), machine design (8), dynamics of machinery (2), hy-

draulics (5), factory construction (3), power plant design(4), foundations (1), refrig-

eration (1), heating and ventilating (1), and shopwork (10). 

 This increasing specialization has not been confined to the subject-matter of each 

curriculum. In 1886 the civil engineering curriculum was divided into three sub-spe- 

cialties, civil engineering, railroad engineering, and topographical engineering. The
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following year mechanical engineering was divided into marine engineering, locomo-

tive engineering, and mill engineering. As a result, the six different curricula of 1867 

have now expanded into more than twenty. Fifty years ago the work of the first two 

years was the same in all six curricula; now specialization begins in the middle of the 

first year. Then a student carried only four or five courses at one time; now he carries 

from eight to thirteen. 

 The following table gives the distribution of time among the three main divisions 

of the materials of instruction for two curricula in the two typical schools together 

with the average for all 126 schools. The figures are per cents. 
 
                  Languages     Mathematics   Drawing 

    1867             Humanities        Sciences Engineering 

ILLINOIS C. E. 25 33 42 
ILLINOIS M. E. 24 40 36 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY C. E. 29 29 42 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY M. E. 31 27 42 

Average 27 32 41 

  1914 

ILLINOIS C. E. 12 30 58 
ILLINOIS M. E. 14 33 53 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY C. E. 17 35 48 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY M. E. 18 36 46 

Average 15 34 51 

Average (all schools) 19 29 52 

 

 There is no agreement as to what percentage of time should be devoted to each of 

these main groups of subjects. The percentage devoted to professional work varies 

from 25 at Northwestern, or 30 at Johns Hopkins University, to 70 at Cornell, or even 

to 85 at the Michigan College of Mines. Similarly there is no accepted proportion for 

individual subjects like calculus, which varies from 52 hours at Rensselaer to 216 

hours at the University of Florida. The requirement in languages in college varies 

from zero at Leland Stanford, the University of Virginia, and Cornell, to 408 hours 

(18 per cent) at the Sheffield Scientific School at Yale, or to 594 hours (18 per cent) 

at the Virginia Polytechnic Institute. The total number of hours of assigned work re-

quired for graduation varies from 2000 to 3800, and the number of required credit 

hours per week varies from 16 to 28. 

 At several of the schools visited efforts are being made to adjust the requirements 

of the several courses in such a way that a student will be able to accomplish the 

work in 50 hours a week, including class work, laboratory work, and outside prepara-

tion. As a matter of fact few students succeed in keeping up to grade without     

spending much more than this on their work. If a student is able to keep within the 

limit, he has, when he is carrying thirteen courses, on the average 3 hours, 50 min-
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utes, and 46.15 seconds per week for each. Rensselaer is the only school among those 

visited that limits the students to three subjects at any one time. There each subject is 

pursued intensively for a stated period that varies from one to fourteen weeks. Thus 

the freshman begins work with chemistry, drawing, and French. At the end of eight 

weeks his three subjects are algebra, drawing, and French. In the second term he be-

gins with trigonometry, French, and steam engineering, which is changed at the end 

of five weeks to gas analysis, French, and physics. By this means, altho he carries but 

three studies at one time, he actually completes from ten to eighteen different sub-

jects each year. 

 There is almost unanimous agreement among schools, parents, and practising engi-

neers that at present the engineering cu whatever its organization, is congested be-

yond endurance. It is obviously absurd to require from the student more hours of in-

tense mental labor than would be permitted him by law at the simplest manual labor. 

Yet on all sides the pressure of topics and subjects that have become important be-

cause of the extraordinary growth of science and industry is constantly increasing. In 

1870 a student might choose his specialty at the end of his second year; now he must 

decide in many cases in the middle of his first year. Formerly the choice lay among 

civil, mechanical, and mining engineering; now the selection must be made from aer-

onautical, agricultural, architectural, automobile, bridge, cement, ceramic, chemical, 

civil, construction, electrical, heating, highway, hydraulic, industrial, lighting, ma-

rine, mechanical, metallurgical, mill, mining, railway, sanitary, steam, textile, tele-

phone, topographical engineering, and engineering administration. No one school 

offers curricula in all of these specialties. But all are offered somewhere, and enough 

are given at every school to render the selection during the freshman year of his life’s 

specialty a peculiarly difficult matter for the student. 

 From the wide variations in the amount of time required for completing the course 

and the great diversity of ways in which the schools have met the demands of in-

creasing specialization in industry it is clear that they have reached no general 

agreement as to how to deal with the problem. Each has sought to adjust itself as best 

it could to the immediate demands in its locality, and has added specialized courses 

as the need for them appeared. But tho there are many variations in the details of cur-

ricula at the several schools, all have remained true to the original conception of the 

early curriculum; namely, that instruction in the general principles of science and in 

the humanities should precede instruction in the various technical specialties. In near-

ly all curricula the work of the freshman year consists of chemistry, mathematics, 

English, foreign languages, and drawing. The work of the sophomore year, while not 

so well standardized, very generally contains calculus, physics, some language study, 

and drawing, with here and there a few of the engineering courses. The junior and 

senior years are filled to overflowing with specialized technical courses. 

 The present curricula are thus the natural result of two well-defined influences; 

namely, the original curriculum that was imported from France in 1849 by Professor 
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B. F. Greene of Rensselaer, and the phenomenal expansion of science and industry. 

Meanwhile, two other influences have been gradually developing—the engineering 

profession and the science of education. The bearing of these on present practices is 

discussed in the later chapters. 

 Since the plan on which this study was carried out did not contemplate a complete 

survey of engineering schools or a grading of them into classes as good, bad, or indif-

ferent, only twenty typical schools were visited. The examples in the following chap-

ters are therefore drawn in the main from these schools, selected not because of their 

geographical location, but because they seemed representative of all types of engi-

neering college. The author wishes here to express his appreciation of the cordial 

manner in which all college presidents and teachers cooperated in securing all the 

information sought and in frankly discussing mooted points. The twenty schools vis-

ited were the following: 

 

The United States Military Academy, West Point, N. Y. 

Rensselaer Polytechnic Institute, Troy, N. Y. 

Massachusetts Institute of Technology, Cambridge, Mass. 

Stevens Institute, Hoboken, N. J. 

Carnegie Institute of Technology, Pittsburgh, Pa. 

Columbia University, New York, N. Y. 

Tufts College, Tufts College, Mass. 

Worcester Polytechnic Institute, Worcester, Mass. 

Virginia Polytechnic Institute, Blacksburg, Va. 

Purdue University, Lafayette, Ind. 

Pennsylvania State College, State College, Pa. 

Cornell University, Ithaca, N. Y. 

Sheffield Scientific School, Yale University, New Haven, Conn. 

University of Pennsylvania, Philadelphia, Pa. 

University of Virginia, Charlottesville, Va. 

University of Pittsburgh, Pittsburgh, Pa. 

University of Illinois, Urbana, Ill. 

University of Wisconsin, Madison, Wis. 

Ohio State University, Columbus, Ohio. 

University of Cincinnati, Cincinnati, Ohio. 
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CHAPTER V 

METHODS OF ADMINISTRATION IN ENGINEERING SCHOOLS 

THE final control of American Engineering Schools, as of the colleges and universi-

ties, is vested in a board of trustees or regents. In the case of state institutions the 

members of the governing board are usually appointed by the state governors, while 

in independent institutions they are self-elected for long terms. Generally the regents 

or trustees are citizens who have won distinction in either professional or industrial 

life. In a few cases a limited number of members of the faculty are also members of 

the board; but as a rule all communication between the faculty and the board is thru 

the president. 

 The regents or trustees are charged with the financial management of the schools. 

They elect the president on their own initiative and appoint or promote members of 

the faculty on his recommendation. All appropriations, to be legal, must have their 

sanction, and educational policies framed by the president or the faculty are nominal-

ly subject to their veto. This organization places large responsibilities on the presi-

dent and makes it possible for him to be the dominant influence in the development 

of a school. 

 In the early schools the problem of framing and administering the requirements for 

admission and graduation was relatively simple. At Rensselaer the first faculty had 

but two members, both chosen because of their sympathy with the educational aims 

of the institution. Similarly at the Massachusetts Institute, President Rogers sur-

rounded himself with a faculty of nine men who were enthusiastically devoted to him 

and to the new venture. Prior to 1870 no school had as many as 200 students, curricu-

la were few, and the faculties were so small that a close and intimate cooperation 

among the members and with the president was everywhere the rule. But with a 

teaching staff of 260 and 2000 students, the present numbers at the Massachusetts 

Institute, this direct personal contact among the members of the faculty and between 

instructor and student is no longer possible. It was easy for Professor Pickering to 

exert a strong personal influence over every one of the 25 students in his pioneer 

physics laboratory; but it is impossible for any one to do the same when there are 450 

students who need apparatus, attention, and guidance. The increase in number of stu-

dents from 1 in 1870 to 3 now, in value of plants from about one million dollars to 

sixty-eight millions, in annual expenditures from about $250,000 to over eleven mil-

lions, and in number of professional specialties from four to perhaps forty, has com-

pelled the devotion of a large amount of attention to the organization and administra-

tion of the daily routine on which the effectiveness of the school so largely depends. 

 The regulations and the administrative systems that have been developed at the var-

ious schools under the pressure of increasing size and complexity differ widely from 
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one another. All bear evidence of having been shaped to meet local needs under the 

guidance of individuals of strong convictions. But while it is not possible to classify 

these systems in well-defined categories, they may be arranged in a series that ex-

tends from what may be called the marked military type, on the one hand, thru the 

autonomous-department type, to the well-defined cooperative type on the other. 

 The leading characteristics of the military type are exhibited best in the administra-

tion of the United States Military Academy at West Point. Since this school is sup-

ported from the federal purse, its financial control is vested in Congress, which 

makes its appropriations for this purpose on the recommendation of the War Depart-

ment and the Board of Visitors, composed of five senators and seven members of the 

House of Representatives. The administration of the school is entrusted to the super-

intendent and the academic board, consisting of the superintendent, the commandant 

of cadets, and the eleven heads of the departments of instruction. The curriculum 

framed by this board, the methods of instruction, and the textbooks selected for use 

are subject to approval by the War Department. The time schedule and the order of 

instruction in the several courses are determined by the academic board, which also 

conducts examinations, passes on the merits and proficiency of the cadets, grants di-

plomas, and makes recommendations for commissions in the army. When consider-

ing questions concerning relative standing and promotion, the senior assistant in each 

department sits with the academic board. 

 The officers of instruction are detailed to this duty by the War Department. Their 

number varies from 110 to 120 for 580 cadets. Only the thirteen members of the aca-

demic board have any voice in selecting sub and determining methods of instruction. 

The classes are divided into small sections, usually of twelve each. The ground to be 

covered each day and even the questions to be asked during each lesson are as a rule 

determined by the head of the department, who is also required to visit each section 

frequently in order to ascertain the proficiency and qualifications of the cadets and 

the manner in which the instructors perform their duty. The assistants seldom serve 

more than four years, but new appointees are usually required to attend classes and 

study the methods of instruction for a few months before being placed in charge of 

sections. 

 The daily routine of each cadet is rigidly prescribed. He is responsible for some 

duty every hour, is sure to be called to recite at every class meeting, and is given a 

numerical grade for every recitation. These grades are reported by every instructor 

every week, and the roll of the class is arranged each month in the order of the rat-

ings. The division of the class into sections is made according to the relative stand-

ings; the twelve cadets with highest standings being assigned to the first section, the 

next highest twelve to the second section, and so on. The instruction is to a certain 

extent adjusted to the ability of the several sections, the more difficult investigations 

and subjects being given only to the higher sections. Assignments after graduation 

and relative rank when commissioned follow the order of merit at graduation. The
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maximum number of grade points attainable by a cadet in the four years is 2525; and 

since these are assigned by a large number of different instructors, the number se-

cured is a pretty accurate measure of the cadet’s ability to meet the requirements of 

the academy. Because of this fact, the grading system is a very real incentive to good 

work and to the maintenance of the ideals of soldierly honor and obedience to orders 

which are such effective features of this school. 

 While military drill and military instruction are required of male students at all the 

land grant colleges, military methods of administration are little used in engineering 

schools. Here and there maybe found a single department that is administered in a 

military manner. At the University of Pennsylvania several departments divide their 

classes into small sections, outline the work for each “section hand,” as the instruc-

tors have been called, and rotate the instructors among the sections each week. Johns 

Hopkins University has recently introduced a curriculum called military engineering 

very similar to that given at West Point, but the methods of administering it do not 

differ from those used for the rest of the school. The West Point honor and grading 

systems and West Point discipline, either for instructors or for students, were not 

found at any of the other schools. 

 In the great majority of engineering schools the control of the curricula, the regula-

tions for admission and graduation, the time schedule, and the discipline are vested in 

the faculty, which is composed of all officers of instruction above a specified rank, 

differently defined at the various schools. All general educational policies, require-

ments, and rules for students are determined by a majority vote of the faculty and 

administered by executive officers, deans, and boards or standing committees, usual-

ly appointed by the president, tho at several institutions they are elected by the facul-

ty.  The number of these committees varies from six to twenty-six. Every voting 

member of a faculty is subject to service on committees, many of which have to meet 

weekly and devote much time to their work. 

 Faculty control generally ends with the adoption of the curriculum and the time 

schedule. Having determined by majority vote the requirement in hours for each sub-

ject, the choice of subject-matter, texts, and methods of instruction in each subject is 

left entirely to the department concerned. For example, if three hours a week is as-

signed by the faculty to English, the department of English may use that time in any 

way it likes. Each department is treated as an expert in its own line, and this depart-

mental autonomy is carefully preserved by common consent. Departments vary in 

size from three or four members to thirty or forty, and a serious effort is always made 

to assign each man to work for which he is particularly fitted by temperament, abil-

ity, and training. Hence the various phases of the work within a department are usual-

ly well coordinated, but the policies and methods of instruction in the different de-

partments of the same school often differ widely from one another. While faculty 

control is more democratic than military control in that every member of a faculty 

has a vote on  questions  of  general requirements and policies, it does not produce
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the unity of aim and effort exhibited at West Point because its jurisdiction ends at 

departmental boundaries. For this reason, this form of administration is called the 

autonomous-department type. 

 When an engineering school is part of a large university, — like Cornell, Ohio 

State, or Illinois, — which also contains a school of liberal arts, a law school, a medi-

cal school, and an agricultural school, it is customary to vest the control of each 

school in an in dependent faculty of its own. The departments of English, foreign 

languages, mathematics, physics, and chemistry are usually organized under the fac-

ulty of liberal arts, frequently without representation on the engineering faculty. In 

such cases engineering students are under the jurisdiction of the faculty of liberal arts 

for most of their work during their first two years, and the engineering faculty has 

limited control of the instruction of its students in these fundamental subjects. Under 

these conditions the four-year course in engineering has no coordinating centre. 

 The cooperative type of administration has reached its fullest development at the 

engineering school of the University of Cincinnati, tho both the Sheffield Scientific 

School at Yale and Stevens Institute are experimenting along analogous lines. At 

Cincinnati the engineering school has its own departments of English, mathematics, 

and foreign languages; and the departments of physics and chemistry, tho organized 

under the faculty of liberal arts, are represented in the engineering faculty by the in-

structors who teach the engineers. The faculty thus constituted meets every Saturday 

morning for a systematic study of its educational problems. A syllabus stating the 

objects, the methods, the subject-matter, and the mechanism of the school as a whole 

was prepared by the dean and discussed at length by the faculty. After many changes 

and amendments, the syllabus was finally adopted as an adequate expression of the 

basic conceptions toward which the school as a whole is working. Each department 

in turn then presented a similar syllabus setting forth in detail the objects, methods, 

subject-matter, and mechanism by which it proposed to contribute to the general re-

sult. These departmental syllabi were discussed freely by the whole faculty, and ap-

proved only when a general agreement had been reached. In this way there has been 

developed a very effective coordination of effort among the several departments.’ 

 The coordination of effort does not end with the agreement on syllabi. By unani-

mous vote of the faculty no student is finally passed in any subject until he graduates. 

Each student is graded at the end of each course; but if, after receiving a passing 

grade in any subject, he shows in a later course that he is weak in that subject, he is 

sent back to the department in question for more work. For example, the professor of 

machine design may “flunk” a man in calculus if he cannot use the calculus properly 

in the work in machine design. Again, all reports prepared for the technical depart-

ments must pass the department of English before reaching the department for 

which they are intended. This cooperation among the departments in the school
  
1 A full description of the system, including several of the syllabi, has been published by the United States Bureau of 

Education in Bulletin 31, 1916, on The Cooperative System of Education, by Professor C. W.  Park 
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is as important an element in the Cincinnati experiment as is the cooperation of the 

school with the industries. The University of Pittsburgh and the Massachusetts Insti-

tute of Technology are cooperating on a part time basis with industries, but their fac-

ulties are organized on the autonomous-department plan. 

 The cooperative type preserves one of the main advantages of the military type in 

that its jurisdiction extends within departmental boundaries. Since it uses this juris-

diction not for autocratic control but as a means of converting a government by ma-

jority vote into a community of effort for the student’s good, it also possesses another 

of the effective factors of the military type, namely, homogeneity of action. When 

skilfully organized, as at Cincinnati, the engineering faculty is a coordinating centre 

for the entire engineering curriculum. Nor does it appear to have lost any of the nom-

inal advantages of the autonomous-department type in the way of personal freedom 

of its members and inspiration for creative work. 
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CHAPTER VI 

STUDENT ELIMINATION AND PROGRESS 

ENGINEERING schools as a rule keep accurate account of the number of students in 

attendance each year in each class. These figures, however, do not show how large 

the actual elimination is, because a number in every graduating class have pursued 

irregular courses—have entered with advanced standing or been retarded a year or 

more. Hence the difference between the number of graduates in any given year and 

the number of freshmen four years back does not indicate the true mortality. In order 

to determine this it was necessary at each of the schools visited to pick from the rec-

ords of the graduating class all students who had entered four years before and pro-

ceeded thru without break. The ratio of this number of what may be called regular 

graduates to the total number of freshmen four years previously is one expression of 

the manner in which a school is meeting the needs of its locality. 

 Only one of the schools visited already knew how large its elimination is when 

counted in this way. Among this selected list of schools the lowest mortality was 

found at Pennsylvania State College, where just half of the freshmen went thru regu-

larly and graduated in four years. The highest losses were found at the Universities of 

Illinois and Wisconsin, where only about one-quarter of those admitted as freshmen 

graduate regularly on schedule time. The figures vary from year to year at every 

school, so that no fixed figure can be given for any institution; but from the counts 

made for two years at twenty schools it is clear that less than 40 per cent of all fresh-

men at engineering schools complete the course in the allotted time. While this rec-

ord is sufficiently striking, it is better than it was in the early days. Then in some cas-

es the elimination was as high as 91 per cent and the average was nearer 75 than 60. 

This change for the better is in large measure the result of the increased efficiency of 

the secondary schools. 

 While it is interesting to compare the elimination of 66 per cent at the Massachu-

setts Institute, which admits only by examination, with the elimination of 75 per cent 

at Wisconsin or Illinois, which admit almost wholly by certificate, it is not safe to 

draw any conclusions as to the relative merits of the two methods of admission. Elim-

ination depends on too many other variable factors, such as physical health, family 

conditions, financial resources, college spirit, the appeal of the college work, and the 

friendly personal interest of the faculty. For example, the date of Dean Burton’s ap-

pointment as counselor to freshmen at the Massachusetts Institute is recorded by a 

sharp drop in the freshman mortality figures. Because of the complexity of the prob-

lem it is perhaps not surprising that the schools have no records as to the reasons for 

withdrawal. 

Nearly half of the elimination takes place in the freshman year and about one-quarter 

more in the second year.   During these  years almost  all of the  time is spent on Eng- 
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lish, mathematics, foreign languages, chemistry, and physics, and little opportunity is 

afforded for contact with real engineering projects. Hence many engineering students 

are eliminated before they have a chance to show their ability at their chosen profes-

sion. At one of the schools several cases were found where engineering students had 

been eliminated during the freshman year for failure to meet the demands of the de-

partment of German. At another English literature was a fertile source of discour-

agement for freshmen. A large amount of pertinent information concerning the suc-

cess of school administration and instruction may be secured from a study of the rea-

sons why students leave engineering schools, especially since many who do leave 

before graduation persist in engineering and make a success of it. 

 The variations of the average grades of a group of students thru their four years of 

work supply an interesting basis on which to judge of student progress and the adap-

tation of the work to student needs. The following table presents for each of the four 

years the weighted average grades1 of a group that entered regularly, progressed 

normally, and graduated on time at the several schools named: 

 
                Institution   Cases  Fr.  So.  Jr.  Sr. 

UNIVERSITY OF ILLINOIS      64 86.9 84.1 83.7 83.2 
UNIVERSITY OF VIRGINIA     17 86.0 84.0 82.0 85.0 

PURDUE UNIVERSITY     51 84.7 83. 80.7 81.6 

RENSSELAER     22 83.7 81.7 82.5 83.7 
UNIVERSITY OF WISCONSIN     47 84.5 83.3 83.2 86.3 

PENNSYLVANIA STATE     54 80.6 80.4 78.4 79.6 

VIRGINIA POLYTECHNIC     48 79.6 77.0 77.3 87.3 
STEVENS     51 78.1 73.4 75.5 74.0 

CINCINNATI     19 77.4 76.5 74.9 76.7 

COLUMBIA     56 77.2 76.2 75.8 74.9 
UNIVERSITY OF  PENNSYLVANIA     55 74.5 72.0 70.0 71.5 

OHIO STATE UNIVERSITY     46 72.0 71.0 70.6 71.2 

YALE (SHEFFIELD)     79 67.0 65.2 68.2 
MASSACHUSETTS INSTITUTE     67 66.8 64.7 65.6 64.0 

CORNELL (SIBLEY)     40 75.2 79.9 73.2 73.9 

CORNELL (C.E.)     30 76.3 76.0 72.1 75.2 
TUFTS     39 72.0 68.0 70.0 73.0 

 Average   785 76.9 74.9 74.8 76.9 

   Average age of graduation 22 years, 11 months. 
 

 In every case the standing of this random group of the regular graduates is higher in 

the freshman than it is in the sophomore year. In the general average for the 785 cas-

es studied the drop of points persists thru the junior year and is recovered in the last 

year. The phenomenon is general, altho some schools exhibit it more markedly than 

do others. 

 While several interpretations of the meaning of this sag in the average grade curve 

are possible,  its cause  may be located  statistically  by  noting  in what  subjects  the 

 
1The weighted average is found by multiplying each grade by the number of credit hours it represents, adding the 

products, and dividing by the total number of credit hours for the year. 
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students had the greatest number of low grades in those years. For this purpose thirty 

or more records of regular graduates were taken at random and the number who re-

ceived low grades in each subject was counted for each school. The meaning of the 

term “low grade” was determined at each institution from a study of the local grading 

system. At schools that grade numerically with 60 as the pass mark, like Virginia 

Polytechnic Institute, Stevens Institute, and Cornell University, all marks below 70 

were counted as low. Thus, for example, at Stevens Institute out of 51 cases studied, 

31 had at least one grade below 70 in physics and the average mark in that subject for 

these thirty-one students was 63.2. In calculus 26 had received grades below 70, the 

average being 63.1, and so on. When 70 was the pass mark, as at the Universities of 

Illinois and Wisconsin and Pennsylvania State College, marks below 80 were count-

ed. At the Massachusetts Institute of Technology, where 50 is the pass mark, L, 

which stands for a rating between 50 and 60, was considered a low grade. At Shef-

field Scientific School and Rensselaer Polytechnic Institute, which grade on a scale 

of 4 with 2 as the pass mark, marks below 2.4 were counted. The grading systems of 

the University of Pennsylvania, Ohio State University, and Purdue University could 

not be used for this purpose because they recognize only three grades, A, B, and C, 

above pass mark and the lowest grade covers too wide a range. At Ohio State Univer-

sity a new grading system with five steps between pass and 100 has recently been 

introduced. 

 The table on page 35 gives the results of this count for twelve schools. Every stu-

dent whose record was counted was a regular student who had entered without condi-

tions, had passed thru normally in the regulation time, and had received his degree. 

The low marks of the 60 per cent who were “weeded out” are not included; if they 

had been, the percentages would be much higher. The figures in the table are there 

fore a fair statement of the results achieved by a school under the most favorable 

conditions. 

 Taken in connection with the facts of elimination, these figures show that out of 

every 1000 freshmen not more than 400 graduate in the specified time, and that half 

of these just “get by” in physics, calculus, and mechanics. The percentage of low 

grades is about the same in English and modern languages when these subjects are 

required. This means that out of every 1000 who are admitted only about 200—20 

per cent —adapt themselves creditably to the requirements of the schools in these so-

called “fundamentals.” 
 The two tables make it clear that the drop in the average grades occurs when physics 

and calculus with an average low grade record of 49.5 per cent replace chemistry and 

freshman mathematics with an average low grade record of not over 25 per cent. It is 

not possible to give this last percentage exactly because the freshman mathematics 

courses are not comparable; but the low grade counts in advanced algebra, trigonome-

try, and analytics are all below 20 per cent. Altho the third year program and courses 

differ so much from one another that the figures from various schools cannot be com
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NUMBER AND PERCENTAGES OF LOW GRADES IN PARTICULAR SUBJECTS 

Insti- 

tution 

Number 

of Cases 
Physics English 

Modern 

Languages 
Calculus Mechanics Chemistry 

Descriptive 

Geometry 

1 67 43-64% 37-53% 38-57% 22-32% 21-31% 20-29% 13-19% 

2 79 40-51 47-60 51-64 48-61 47-60 31-40 26-33 

3 51 31-60 11-21 4-8 26-51 26-51 11-21 21-41 

4 48 21-47 37-77 34-69 13-29 20-42 7-14 5-10 

5 43 30-69 
not 

required 

not re-

quired 
32-74 28-65 14-32 16-37 

6 54 38-70 
not 

required 

not re-

quired 
33-61 35-65 15-28 21-40 

7 19 10-52 10-52 6-31 9-47 13-68 11-58 4-21 

8 46 13-28 13-28 16-35 18-40 25-54 7-15 6-13 

9 64 24-37 31-48 
not re-

quired 
27-42 27-42 14-22 4-6 

10 22 15-68 16-72 7-33 15-70 5-23 15-70 10-45 

11 44 13-30 7-16 
not re-

quired 
22-50 24-55 12-27 5-11 

Totals 621 317 
249 

534 

198 

416 
298 330 201 165 

  31.0% 46.6% 47.5% 48.0% 53.1% 32.3% 26.5% 

 

pared, it is fairly evident that the mechanics, which is common to all and which has a 

low grade record of 53.4 per cent, is largely responsible for the continuation of the 

low average grade thru the junior year. 

 While many professors regard a high percentage of low grades as proof of efficient 

teaching, experience has proved that an excessive number of low grades in some par-

ticular subject in the records of regular graduates is a sign of some trouble that can 

usually be removed by a little attention. For example, 80 per cent of the regular grad-

uates of 1914 in Cincinnati had low grades in History 50. This course had been intro-

duced the previous year to give a broader outlook. It consisted of a rapid study of 

geologic evolution, of biologic evolution, and of the evolution of civilization given 

by the respective heads of the departments of geology, biology, and history in the 

Faculty of Arts, Literature, and Science. The first year it proved a great success, and 

the engineering students in the class of 1913 gathered much information and inspira-
tion from it. But the class of 1914 had much trouble with it until it was discovered that it 

had been turned over to a young instructor who was drilling the class on Guizot’s 

History of Civilization by the textbook-recitation method. The course was promptly 

dropped and the students absolved from the requirement by the engineering faculty. 
 Since employers regard college grades as precarious guides in selecting men for jobs, 
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an effort was made to find out whether the fact that about half the graduates of engi-

neering schools have received low grades in physics, calculus, and mechanics means 

that half the graduates are on that account low grade engineers or not. The direct 

method of doing this would involve tracing the later careers of those who received 

the low grades to see if they were relatively less successful than those who ranked 

high in these fundamental subjects. This method is impracticable because there is as 

yet no valid definition of what constitutes success in engineering. There are, howev-

er, a number of large industrial firms that employ several hundred college graduates 

each year and keep records of their accomplishments. A comparison of the records of 

the same men in college and in industry would indicate how close the correlation be-

tween them is. 

 Thru the courtesy of Mr. A. L. Rohrer of the General Electric Company of Sche-

nectady, copies of his records of the 168 graduates in their employ from the class of 

1913 of all the schools visited were secured. On these records each man was rated by 

each of the foremen under whom he worked as A, B, or C in each of the five quali-

ties, Technical ability, Accuracy, Industry, Ability to push things, and Personality.  

Thru the courtesy of the schools copies of the full college records of these same men 

were secured. An extended study of these two sets of records by Professor E. L. 

Thorndike of Columbia showed that the correlation between the two was very slight; 

that is, that ability to secure high grades in college was no indication of ability to 

meet the requirements of the General Electric Company. On the other hand, the col-

lege grades signify something, since the grades for the senior year correlate closely 

with the aver age grade for the entire course, showing that ability to secure high 

grades in college is a stable and permanent characteristic of an individual. A similar 

study was made thru the courtesy of Mr. C. R. Dooley of the Westinghouse Electric 

and Manufacturing Company of Pittsburgh of a group of 40 college graduates in the 

employ of that company. The results were practically the same. 

 While these studies have not yet settled the problem, they serve to define it more 

clearly. The facts are that half of the college graduates are rated low in the fundamen-

tal subjects by their college instructors, and that college grades show little correlation 

with the ratings of two large industrial companies that “take on” several hundred col-

lege graduates each year. 
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CHAPTER VII 

TYPES OF INSTRUCTION IN ENGINEERING SCHOOLS 

THE method of instruction employed at Rensselaer during the first five years (1824- 

29) was new in America, tho it resembled the methods inaugurated in 1806 by Pesta-

lozzi in the Fellenberg School at Hofwyl, Switzerland (page 9). It was designed by 

the first senior professor, Amos Eaton, who was a graduate of Williams College and 

had done graduate work with Silliman at Yale. At no other school was the student 

given the place of the teacher and compelled to rely on his own resources in prepar-

ing subjects for presentation to his classmates. The observation of industrial process-

es as the basis for class discussion and laboratory problems which led by inductive 

processes to general principles after the manner of real scientific investigation were 

at this time unique in elementary instruction. No other school treated beginners by 

the same methods that were used so successfully in advanced study. But altho the 

method as practised proved successful, it had to be abandoned in 1829 because it was 

too expensive for the slender resources of the school. As the number of students in-

creased, still more didactic methods were introduced; until in 1850, when the French 

curriculum was adopted (page 12), the student lectures had become blackboard 

demonstrations prepared from texts followed by “interrogations” and recitations con-

ducted by the professors. 

 At the opening of the Massachusetts Institute in 1865 instruction was given mainly 

by lectures, in which the professor presented to the class a logically well-organized 

explanation of the general principles and theories of the subject in hand. Lectures 

were illustrated by experiments and accompanied by blackboard demonstrations. The 

students took notes, recited on them at regular quiz hours, and worked problems that 

illustrated the principles and theories presented. Frequent and thorough examinations 

were given for the double purpose of testing knowledge and inciting to diligence. As 

soon as the facilities were available, laboratory work was introduced, in which the 

student reproduced standard reactions, measured known constants, verified theories, 

visualized principles, and acquired skill in manipulating delicate instruments. 

 The use of the illustrated lecture in instruction in science was not new, but the or-

ganization of laboratories for undergraduate students in physics was a striking inno-

vation, suggested by President Rogers and carried out by Professor E. C. Pickering in 

1869. The course consisted of a series of simple experiments illustrating fundamental 

principles or scientific methods of study and involving the use of important instru-

ments. The administration of the work was made practicable by having complete ap-

paratus for each instrument ready for use together with carefully prepared written 

directions for its correct manipulation. When a class entered the laboratory each 

member received a number directing him to the apparatus and written directions for 

making the required measurements and recording the results. In this way Professor
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Pickering was able to care for a class of twenty-five students at one time, because, as 

he himself tells us, the written directions prevented the students from making serious 

mistakes. 

 The marvelous expansion of this method of laboratory work into all branches of 

science in all grades of schools and the profound impress made by this expansion on 

the American school system are matters of common knowledge. Here it is important 

to note that this type of laboratory work was devised as an adjunct to the illustrated 

lecture, for the purpose of giving training in pure science, to foster industrial produc-

tion, and develop the scientific or professional engineering spirit. 

 Besides the innovation of the laboratory, new methods of teaching English were 

introduced at the Massachusetts Institute by Professor W. P. Atkinson, who sought to 

cultivate a taste for good literature and a love of reading on subjects of interest to the 

student as a man and a citizen. After a rapid review of composition and rhetoric the 

classes read and discussed Duruy’s Histoire des temps modernes and Guizot’s Histo-

ry of Civilization in Europe. In the fourth year contemporary problems of politics, 

economics, and sociology were discussed and written reports on subjects of their own 

selection were read by the students in class. Two hours a week throughout the four 

years were devoted to this work. 

 Since 1864, but especially since 1900, the increase in the number of students and 

the migration of students among the schools have tended to standardize methods of 

teaching in both high school and college. In the secondary school the process has 

been accelerated by the pressure of college entrance requirements and the accompa-

nying definitions of the units framed by the colleges, while in the colleges the process 

has been retarded by the universal respect for departmental autonomy and academic 

freedom with the consequent “laissez faire” attitude toward the problem. Under these 

conditions some college subjects have become more standardized than others, but it 

is seldom possible to point to any one method in any one subject as generally accept-

ed. At present there is a marked tendency in certain subjects to break away from the tra-

ditional forms. Some of the efforts in this direction are noted in subsequent chapters. 

 While there are many differences in the details of curricula and methods of teach-

ing, the first two years of work are more nearly uniform than the last two in content 

and general treatment. The freshmen in almost all schools take mathematics, chemis-

try, English, drawing, and shopwork; while sophomores usually study mathematics, 

physics, English, drawing, and shopwork. The methods of instruction in some of 

these fundamental subjects, like mathematics and physics, are very much the same 

every where; while in chemistry, English, drawing, and shopwork there are wider 

variations and several distinct types. Still the salient features and the underlying phi-

losophy of the instruction in each subject are enough alike at most institutions to 

make possible a description of the typical treatment accorded to engineering students 

during their first two years in college. Certain striking exceptions in which totally 

different conceptions and methods prevail are discussed in the later chapters. 
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 The aims and methods of teaching mathematics to engineering students have been 

fully described in the report of Sub-committee IX of the International Commission on 

the Teaching of Mathematics.1 From this report it appears that mathematics teachers 

are generally agreed that mathematics should be taught as a science by professional 

mathematicians and not as a tool by engineers. While all regard professional efficien-

cy in the use of mathematics as the test of success, they hold that this efficiency is 

best secured by teaching mathematics by itself, so that the student’s mind is not dis-

tracted from the mathematical form by the engineering applications. The limited 

amount of time allotted to mathematics is barely sufficient to enable the mathematics 

teacher to cover the required ground thoroughly. If the teacher of engineering would 

familiarize himself with the mathematical subjects, the methods, and even the nota-

tion his students have learned, he could then teach them how to use their mathematics 

with a success and completeness not possible to his mathematical colleague. 

 Inasmuch as the professors of mathematics are generally agreed on this point of 

view, the mathematical instruction to freshmen and sophomores is almost universally 

based on the use of a standard text, in which the successive propositions are deduced 

by logical processes from definitions, axioms, and postulates. A definite portion of 

the text is assigned as a lesson, and in the daily recitations the students are required 

either to reproduce demonstrations given in the text or to solve mathematical prob-

lems that illustrate the theorems under discussion. The customary division of mathe-

matics into trigonometry, analytics, and calculus is preserved at all but two of the 

schools visited. In short, mathematics in engineering colleges, as in the high schools, 

is still taught by the standard methods that are so well known as to need no further 

description. According to the report just mentioned (page 30), “There is nothing to 

indicate that many changes have taken place during the past 10 years, or that many 

are contemplated.” 

 In chemistry the basis of the instruction is the demonstration lectures, at which the 

entire class assembles two or three times a week. For the quiz and laboratory work 

the class is divided into sections, usually in charge of assistants. A standard text is 

generally followed by the lecturer and used by the students as a source of in for-

mation for the quizzes. A separate manual containing directions for the laboratory 

experiments is customary. 

 In most of the schools visited the presentation of the subject-matter in chemistry 

begins with general statements about atoms, molecules, chemical equations, Avoga-

dro’s law, molecular weight, chemical affinity, diffusion, valence, and formulas. 

Then follows descriptions of the non-metals, oxygen, nitrogen, carbon, etc., —their 

occurrence, preparation, and properties, — leading to the metals in due order The facts 

discussed in the lectures are learned for the quizzes and verified in the laboratory.  The 

purpose of this type of instruction is to familiarize the student with the elementary  

1United States Bureau of Education, Bulletin No.9. 1911. 
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facts and reactions of chemistry as a means of identifying substances and therefore as 

a preparation for qualitative and quantitative analysis. 

 Recently another type of course in chemistry has been introduced in a number of 

schools. In this the data are presented not as elements prerequisite to a mastery of 

chemical analysis, but as vehicles for the elucidation of modern chemical theories. In 

courses of this type the study of oxygen includes such topics as the diffusion and liq-

uefaction of gases, critical temperature, endothermal and exothermal reactions, the 

gas laws, and the kinetic-molecular theory of matter. Similarly the facts about hydro-

gen are used to elucidate reversible reactions, chemical equilibrium, equivalent and 

atomic weights, and chemical equations. The study of water furnishes a natural 

thread on which to string the law of combining volumes, Avogadro’s theory, molecu-

lar weight, solutions, and the kinetic theory of solution. The properties of chlorine 

serve as a basis for the presentation of electrical conductivity of solutions, osmotic 

pressure, ionic theory, degrees of ionization, electric charges on the ions, valence of 

the ions, and the electron theory. About ten weeks is required to cover these topics, 

and then the remainder of the year is spent in studying the more important reactions 

from the standpoint of the ionic theory. Incidental references are made to the indus-

trial uses of chemistry.  

 Altho these two types of courses in chemistry differ in content, both use the lec-

ture-quiz-laboratory method of imparting information. In one case the information is 

being stored for later use in chemical analysis; in the other it is being organized for 

the elucidation of ionic theories. In neither case is the student given such a project as: 

“Make baking powder and determine whether it is better and cheaper than any you 

can buy.” His problem is always in the form: “Determine the chemical composition 

of this powder.” 

 Physics is generally taught in the second year as a one-year course, tho five of the 

schools visited devote some time to it in the first year. As in chemistry so here, the 

typical course consists of three parts, demonstration lectures, quizzes, and laboratory 

work. In the lectures, of which there are two or three a week, the professor presents 

the essential facts and principles in a logically well-arranged order, beginning with 

definitions and statements of laws, followed by their mathematical or experimental 

demonstration, and ending with a few brief remarks concerning practical applica-

tions. u Usually the entire sophomore class attends the lectures in a body, so that, in 

the larger schools, there are as many as three or four hundred students at each lecture 

For quizzes the class is divided into sections of from twenty to twenty-five each, and 

these are turned over to assistants who listen to recitations on assignments in the text, 

question the students on the content of the previous lecture, and assign illustrative 

problems to be solved at home With large classes of from twelve to twenty sections 

the quiz and laboratory work requires a large corps of assistants, many of whom are 

graduate students or fellows who receive a modest stipend (from $200 to $500 a 

year) for this service 

 In the laboratory work the methods and aims defined by Professor Pickering in 
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1869 are still dominant everywhere. About one-third of his original experiments are 

still in use, and the new ones that have been introduced have as their objects the veri-

fication of some known law, the visualization of some known fact, or the determina-

tion of some known constant. When the same experiments are used year after year, as 

is the case at most schools, the students soon discover that the number of failures and 

low grades in physics can be materially reduced if the results of the physics experi-

ments are carefully preserved from year to year and judiciously used as occasion may 

require. Projects of the form “Which of these 3 electric motors is the best for the 

price ?“—a question that cannot be answered without making the experiment —are 

almost never used. The prevailing type is “Measure the efficiency of this electric mo-

tor.” In other words, physics instruction, like that in chemistry, aims to stock the stu-

dent’s mind with information as a preparation for solving real problems should they 

ever arise. 

 The proficiency and the progress of students in mathematics, chemistry, and phys-

ics is measured by periodic examinations, which as a rule call for the statement of 

definitions, the mathematical demonstration of principles or theorems, and the solu-

tion of illustrative problems. For small classes the professor himself is usually alone 

responsible for the questions, and is also sole judge of the rating of the replies. For 

large’ classes the examination is sometimes set by the professor in responsible charge 

and sometimes by the entire group of instructors in conference. In either case the pa-

pers are as a rule distributed among the instructors for rating so that the grade as-

signed is often determined by the judgment of a single observer. The final grades as-

signed for the year are a combination of the examination grades, the quiz grades, and 

the laboratory grades. In making the combination the weights given to these several 

elements vary enormously, some treating the examination as the sole factor and oth-

ers relying mainly on the quiz and laboratory grades. The students are generally well 

posted on the system used in each department, and their grades are fairly accurate 

statements of their successes in meeting the requirements of the various professors. 

 With regard to instruction in English, the engineering schools may be divided into 

two approximately equal groups, the one composed of those schools that maintain the 

current standard college course; and the other composed of those that are trying to 

discover a type of work better suited to engineers. In the standard type of course, the 

student studies a textbook of composition and rhetoric, learns the rules of correct 

punctuation and paragraphing, together with the four forms of discourse, and then 

writes themes on assigned subjects selected by the instructor to give practice in either 

description, narration, exposition, or argumentation. In some schools the strict adher-

ence to this plan is mitigated by allowing a choice from among several assigned sub-

jects. The accompanying study of literature consists of a brief survey of the lives of 

the great writers and the analysis of selected passages from their writings. This 

well-known type of course was developed during the latter half of the past century 
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for the purpose of making English an acceptable substitute for the classics in high 

schools and colleges. 

 Doubtless because the professional engineers have been so frank in their demand 

for better training in English, about half of the engineering schools are experimenting 

with their methods of teaching this subject. These experiments are so varied in plan 

and execution that it is not possible to classify them. One of the more radical of these 

is described in Chapter X. 

 But if it is impossible to describe the types of instruction in English because of 

their number and diversity, it is still more difficult to select any one type of drawing, 

descriptive geometry, or shopwork as characteristic of even a majority of the schools. 

In drawing the aims of the instruction range all the way from imparting enough tech-

nical skill to enable a graduate to earn his living as a draughtsman, to developing the 

power of visualizing solid objects from flat drawings. At some schools the subject is 

introduced with geometrical drawing for practice in the use of instruments, at others 

the first plates are merely copied, while at still others freehand sketching in perspec-

tive takes the lead. In some cases descriptive geometry is closely correlated with 

drawing from the beginning; in others it is treated independently and even by a sepa-

rate department. 

 The variations in types of shopwork are no less numerous. At some few schools no 

shopwork whatever is required; at others students merely visit shops and listen to 

lectures on the subject, but do no actual work with tools; at still others the emphasis 

is placed on acquiring a certain amount of manual dexterity in typical operations with 

tools, but nothing is actually constructed; at others production of salable articles is 

placed foremost; the shop is used in some cases as a means of acquiring practice in 

scientific management and business administration; while under the cooperative plan 

the school conducts no shopwork, but the students gain practical experience with 

tools, production, and management by working half time for pay in industrial plants. 

It is a striking fact that the three subjects in which there are such wide variations in 

teaching practice are the three that are constantly exposed to objective test. English, 

drawing, and shop are three subjects in which a student’s ability is expressed objec-

tively if at all; and these are the subjects in which experiments in methods of teaching 

are most numerous. 

 These six subjects—mathematics, chemistry, physics, English, drawing, and shop 

— occupy the major part of the time for the first two years in all engineering curricu-

la. The majority of schools also require one or more foreign languages, taught almost 

invariably by the standardized method of grammatical study and analysis. The civil 

engineering curriculum usually includes in the first or second year the theory of sur-

veying, followed by a summer camp for practical work. Apart from this work in sur-

veying, there is as a rule very little that makes the freshmen or the sophomores vivid-

ly aware of the fact that they are studying engineering. This has been recognized as a 

defect by some schools, which have sought to remedy it by “orientation” lec  
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tures and talks by professional men describing the nature of real engineering 

work in the field. Still there are cases on record where freshmen in engineering 

have been “weeded out” entirely because of deficiencies in English and German. 

 The instruction during the last two years is almost wholly devoted to profes-

sional work. The prevailing methods of teaching are very similar to those used in 

the earlier years in chemistry and physics, the difference being that the topics and 

problems are technical rather than purely scientific. Since specialization has now 

divided the juniors and seniors into groups, the classes are generally small and 

they receive the attention of the older and more experienced professors. Theory 

and theoretical design are strongly emphasized throughout and some attention —

frequently very little—is given to the practical problems of labor, organization, 

values, and costs. 

 Twenty-five years ago every senior was required to prepare a graduation thesis 

as an exercise in the application of all he had learned and a training in engineer-

ing methods of attacking real problems. At present only half of the schools re-

quire theses of all graduates; in one-tenth the thesis is elective, in one-tenth the 

better students only are allowed the privilege of preparing one, and in the remain-

ing three-tenths no thesis is required. Formerly the thesis was frequently the only 

opportunity given the student to exercise his originality and express his initiative 

in constructive work. At present engineering projects are being used more and 

more as problems and exercises in the regular class work of the last two years. In 

a few cases real engineering problems are freely used with freshmen and sopho-

mores. These tendencies to encourage a spirit of investigation among the younger 

students and to give even freshmen opportunities for creative work are becoming 

more marked each year. Several significant changes of this kind are discussed in 

the later chapters. 
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CHAPTER VIII 

ADMISSION 

THE Society for the Promotion of Engineering Education has always had a standing 

committee on Entrance Requirements. This committee has made periodic reports, 

which are published in the Proceedings of the Society. Yet the variations in the re-

quirements for admission to engineering colleges are still very striking (cf. page 22), 

the content and methods of instruction in many of the accepted units have been par-

tially standardized by the effective work of the College Entrance Examination Board 

and of numerous committees on the definition of the high school units. 

 From the point of view of their success in limiting admission to engineering 

schools to those who have some aptitude or ability for engineering, it is evident that 

when 60 out of every 100 admitted fail to continue thru the course, present systems 

of admission are not satisfactory. Even when due allowance is made for those who 

leave for financial reasons and for the praiseworthy desire of faculties to give every 

boy who has any claim to consideration a chance to prove his mettle, a fairly large 

number of students who ought not to try to become engineers are permitted to under-

take a course of study for which they have little natural ability. Nor is this condition 

justified by the plea that an engineering training is good discipline for a journalist or 

a banker; because the spirit of the work is spoiled for true engineers by the presence 

of the temperamentally unfit, while these do not get the maximum benefit from work 

they cannot really do well. 

 Fifty years ago every college gave its own entrance examinations. But as the sec-

ondary schools grew stronger, the custom of accepting their certificates as satisfacto-

ry credentials for admission gradually expanded; with the result that for a number of 

years two ostensibly rival systems have existed side by side, and many a wordy de-

bate over their relative merits has been held. In engineering schools the statistics of 

elimination (page 32) indicate that the success of present admission systems does not 

depend seriously on whether the colleges give their own entrance examinations or 

whether they accept certificates from the secondary schools. 

 Reasons for the similarity of results by the two methods of admission are not hard 

to find. For every high school teacher who has in his class one boy preparing to take 

a college entrance examination is fairly sure to drill the entire class on old college 

entrance examination questions, large collections of which have been reprinted by 

publishers of textbooks and individuals interested in maintaining the examination 

system. Under these conditions if both college and school are sincere in their work,— 

which unfortunately is not always the case, —it clearly  makes  little difference in the 

boy’s  real attainments  at the end  of the course  whether he takes his examination at 

school or at college. In the one case he is admitted by examination, in the other by 

certificate; in  either  case  on  the  average  at  least  60 out of 100 admitted fail to
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finish the course. Evidently the source of the difficulty does not lie in the machinery 

of admission, but in the controlling factor that is common to both, namely, the nature 

of the test itself. For engineering the question, therefore, is not which of the two 

methods of admission is the more efficient, but whether current college entrance tests 

really measure engineering ability or not. Ability to secure high grades in school is a 

stable characteristic of an individual; but is ability to pass current school and college 

examinations a valid criterion of engineering ability? And if not, what type of test can 

be safely used? This is the real problem of admission as it is the real problem of the 

entire college course, for tests control teaching. 

 Trustworthy hints as to the ways and means of discovering better types of tests for 

admission to engineering colleges are expressed in the recent developments of en 

trance systems. For when every college gave its own entrance examinations in its 

own way the secondary schools were confronted with a perfectly impossible task. In 

each subject there were as many different examinations as there were colleges; and 

since each examination measured rather the degree to which the candidate conformed 

to the examiner’s conception of the subject than the student’s real ability, great con 

fusion prevailed. It was to abolish this confusion that the College Entrance Examina-

tion Board was organized in 1900. By having the examination questions framed by 

committees instead of by individuals, by giving the same examination for a large 

number of colleges, and by having all the rating done by one group of readers, condi-

tions were vastly improved, and have continued to improve as the board has gained in 

experience and skill. 

 In the central and western states, where admission has for a number of years been 

by certificate, the development has been nominally somewhat different. There the 

decision as to whether the work of a high school was of such quality as to warrant the 

acceptance of its certificate for entrance to college was made first by professors sent 

out by the colleges; then by state high school inspectors, who visited each school pe-

riodically and reported their findings to the state universities. On the basis of their 

reports a list of “accredited schools” was constructed for each state, and these lists 

were combined by such organizations as the North Central Association of Colleges 

and Secondary Schools to include the schools over a wide territory. Recently there 

has been a tendency to check the findings of the high school inspectors by the ratings 

received in college by the students from the various schools. 

 While the respective developments of admission systems east and west appear to 

be quite different, they are in reality very much the same. In the examination system 

committees instead of individuals both set the questions and grade the papers. In the 

certificate system the work of a high school is now judged more by the ratings of its 

students by a college faculty than by the personal judgment of one high school in-

spector. Hence in both cases the growth has been away from reliance on the personal 

judgment of individuals toward acceptance of the combined judgment of a group. 

Under the certificate system this combined judgment is based on daily observation
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of the student’s labors for a number of months, while under the examination system 

the judgment in each subject is based on the reading of one paper. 

 From the foregoing facts it appears that the real difficulty with college admission 

systems has been instinctively recognized everywhere. The determination of a candi-

date’s fitness to enter college depends ultimately on tests of some kind; and the ten-

dency in selecting and applying tests has clearly been to eliminate the fallacies and 

vagaries of individual personal judgment, in order that grading may become more a 

measure of ability and less an expression of how far the student conforms to the es-

tablished convictions of individuals. But tho very encouraging progress has been 

made of late, all recognize that still greater improvement is possible, and that the 

forward movement is in the direction of reducing the personal equation to a minimum 

by making examinations and tests as objective as possible. 

 The expenditure of an enormous amount of time and energy has been necessary to 

liberate college entrance tests from personal bias and to achieve even the degree of 

objectivity that has been attained. The precipitation of the instinctive feeling for the 

direction of progress into a well-defined statement of conscious aim has proceeded 

slowly. Now that the aim is clear and generally recognized, more rapid advance is 

possible, provided the schools are ready to undertake the arduous and plodding work 

involved; for both the invention and the interpretation of satisfactory tests require 

long and careful statistical studies by competent men who have been specially trained 

for the task. The work is worth while because admission to college is an important 

division of the central problem of education — vocational guidance. If any reasona-

bly trustworthy method of discovering what work each individual is best fitted for 

can be found, the other problems of education will in large measure solve themselves. 

 Since engineering is perhaps the most objective of all professions, it offers excel 

lent opportunities for the scientific study of objective tests. A study of engineering 

education therefore provides an appropriate opportunity to initiate experiments and to 

attempt to sort out the more promising methods of investigation from those that prove 

to be less fruitful. To this end Professor Edward L. Thorndike of Columbia Universi-

ty undertook a special series of experiments with freshmen in engineering at Colum-

bia, Massachusetts Institute of Technology, the University of Cincinnati, and Went-

worth Institute. The experiences with the Columbia group are here described as typi-

cal of the principles and methods applied. Further details with samples of the tests 

used are given in the Appendix (pages 117—125). 

 Thru the courtesy of Dean F. P. Keppel, an invitation was extended by Professor 

Thorndike to forty freshmen in engineering to spend two successive Saturdays (four 

teen hours) in taking the tests. Each of the thirty-four students who completed the 

series was given a small fee and a full statement of his record. Fifteen tests in all 

were used, each designed to record the student’s relative ability in some one particular 

activity which was complete in itself, altho it involved a rather complicated series of
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reactions. Thus each student was asked to read paragraphs and write answers to ques-

tions on their meaning, to identify words as proof of his range of vocabulary, to sup-

ply missing words in sentences, to solve arithmetical and algebraic problems, to per-

form algebraic computations, to draw graphs from given data, to give geometrical 

proofs of stated theorems, to solve problems in physics described in words, to arrange 

physical apparatus to secure stated results, to match each of a series of pictures with 

one of a series of verbal statements, to supply missing lines in drawings of machin-

ery, and to construct simple mechanical devices from their unassembled parts. 

 Each test was constructed as a series of graded steps of increasing difficulty, the 

first being so easy that every one was sure to accomplish it, and the last one so diffi-

cult that only the ablest could master it. The grading of the steps is secured by first 

submitting a large number of problems of a given type to about a dozen successful 

teachers of the subject and asking them to divide them into groups numbered 1, 2, 8, 

4, etc., in what they consider to be the order of difficulty. Problems common to group 

I are used as the first step, those common to group 2 as the second step, and so on, in 

making up a preliminary test, which is then tried on a number of classes in different 

schools. The relative difficulty is then in inverse order to the number who accomplish 

each step. Much further experimenting and computation are necessary if it is desired 

to make sure that each successive step is more difficult than its predecessor by the 

same amount. Most of the tests used in these experiments with engineering students 

were graded in steps of equal difficulty. 

 The advantage of tests of graded difficulty lies in the fact that a student’s grade is 

determined by the number of steps he accomplishes in the assigned time. Since the 

questions used are as a rule of a type that cannot be answered from memory, but must 

be answered by a short statement, judgment concerning the correctness of the an-

swers is seldom ambiguous, so that personal bias in assigning grades is almost whol-

ly eliminated. Independent scorers in these tests repeatedly made ratings that were 

practically identical (correlations .95 to .98. Cf. page 119). 

 The ultimate criterion of the validity of these tests is the future careers of those 

tested. Since extensive data of this kind are not yet obtainable, the results of the tests 

were compared with a composite rating compiled by combining the students’ high 

school marks in English, mathematics, and physics, their ratings in the Regents’ ex-

aminations in these three subjects, their freshman records in English, mathematics, 

and chemistry, the combined judgments of the students concerning one another’s in-

tellectual ability, the judgment of the teachers who were acquainted with the men, 

and the age of entrance to college. This composite is the best obtainable summary of 

the current school judgment concerning the relative intellectual abilities of the stu-

dents tested. By it the thirty-four who took the tests were ranged in a  series in the 

order of their relative standings as determined by current school methods. 

 The students were then arranged in 15 similar  series, the order of merit in each 

being  determined by  the ratings in one of the 15 tests; and each of these 15 series
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was compared with the series defined by the schools’ ratings by the method of Pearson 

correlation coefficients (Appendix, page 119). Every test showed a positive correlation 

with this composite school series, the correlation coefficients varying from .2 to .8. 

 This indicates that all the tests are symptomatic of the qualities which enable a stu-

dent to enter college young, make a good record in high school and in the Re gents’ 

examinations, do well during the freshman year, and be regarded as of high general 

ability by his classmates and teachers. When all fifteen tests are combined into a sin-

gle measure, the test series and the composite school series are almost identical (cor-

relation coefficient .84). 

 The records of the thirty-four men tested at Columbia have been followed for three 

years. Five of the seven who stood highest in the tests received general honors, while 

five of the seven lowest in the tests failed in more than half of their work and left 

school. The top seven all made more than 125 credits in three years, the middle seven 

averaged 92 credits each in three years, and of the lowest seven the two who did not 

leave averaged 56 points each in three years. 

 The tests, however, differ in their validity as symptoms of intellectual ability and 

should therefore have different weights in making up a summary. The computation of 

the relative weights was carried out by Dr. Truman L. Kelley by the method of partial 

correlation coefficients. His investigation shows that a suitable combination of the 

ratings from only seven of the tests gives a closer correlation with the composite 

school series than does the composite of all fifteen (coefficient .87 as against .84). 

These seven tests are the five in mathematics and the two in supplying the missing 

words from sentences. These seven tests require five hours of the student’s time, and 

their results arrange the students in an order of intellectual ability practically identical 

with that of the composite school series. At present the composite school judgment is 

universally accepted as determining fitness to enter college. College entrance exami-

nations consume from fifteen to twenty-five hours of the student’s time. These seven 

tests gave in this experiment at Columbia as good a rating in five hours, and the scor-

ing is independent of personal bias. Similar results were obtained at the other schools. 

 To this rather striking fact must be added another no less important; namely, that 

the other eight tests contributed practically nothing to this result. These eight were 

paragraph reading, range of vocabulary, giving opposites of words, laboratory prob-

lems in physics, matching diagrams with sentences, completing imperfect diagrams, 

physics problems stated in words, and the construction of mechanical devices from 

their unassembled parts. The fact that these eight tests are unnecessary in determining 

an order of ability that closely resembles the order defined by current school practices 

does not mean that they are on that account useless. On the contrary, they are particu-

larly valuable because they evidently measure abilities of which the current school 

methods take no account. Further experimentation is required to determine just what 

these other abilities are. They probably include language abilities that depend on in-

terest in reading, clear grasp of the meaning of single words and phrases, power to
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keep in mind past context in reading a connected passage, skill in working with dia-

grams and apparatus, and mechanical sense. All of these are of prime importance in 

engineering. The development of all the men tested is being followed for the purpose 

of throwing more light on the questions here raised. 

 The same fifteen tests were given by Professor Thorndike thru the courtesy of Dean 

A. E. Burton to forty freshmen at the Massachusetts Institute of Technology, thru the 

courtesy of Dean Herman Schneider and with the cordial cooperation of Professor B. 

B. Breese to forty-one engineering freshmen at the University of Cincinnati, and thru 

the courtesy of Director A. L. Williston to sixty students at the Wentworth Institute in 

Boston. The students in these groups came from so many different schools that it was 

not possible to make a composite rating of their abilities on the basis of their school 

records. The college records of these men have been followed for two years, with the 

result that in Cincinnati the tests prophesied academic achievement in these two years 

as accurately as the college rating for one year prophesied the rating for the succeed-

ing year (correlation coefficients .64 and .6 At the Massachusetts Institute the tests 

prophesied the college ratings for the two years four-fifths as well as the ratings for 

one year prophesied those for the succeeding year (correlation coefficients .49 and 

.64). The implication is that such tests as these tell as much about a student before he 

enters college as the college now knows of him at the end of his freshman year. 

 The same tests were given to groups of students at four different institutions. A 

comparison shows large differences among the average abilities of the four groups. 

This indicates that certain schools, whether because of their locations, their reputa-

tions, their student activities, or the excellence of their training, attract boys of greater 

innate ability. When further developed and perfected, tests of this type may make it 

possible to construct a scale of freshman abilities, by which each school can measure 

the quality of each freshman class. It is conceivable that a similar scale to measure 

the abilities of the seniors may some day be constructed. Then the difference in the 

positions of the freshmen and the seniors on these scales would be a much more valid 

criterion of the success of the school work than any now available. 

 Neither present admission systems nor objective tests take account of several im-

portant factors that in many cases have an important bearing on a student’s efficiency 

in schoolwork. For example, Professor Thorndike found that during their high school 

course two-thirds of the freshmen examined had spent more than 8 hours a week on 

work other than school work. The median number of hours per week of such work 

reported was 1 during school time and 40 during the summer vacation. Out of 72 

freshmen at Columbia and the Massachusetts Institute, 21 reported no outside work, 

37 reported from 1 to 9 hours of outside work, 11 from 10 to 19 hours, and 3 more 

than 20 hours. At Cincinnati all the engineering students spend half their time in out-

side work. One student, who was rated low in the composite school series but who 

made an excellent record in the tests, was found to be doing over 40 hours a week of
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outside work. It is clear that a record of the amount and the kinds of outside work 

done by students would be of value in determining fitness to enter college. 

 A record of boyish interests and activities might also help to reveal to college ex-

aminers the presence or absence of real engineering bent or temperament. The fresh-

men tested by Professor Thorndike were asked to indicate by numbers their present 

preference for bargaining, managing people, studying books, clerical work, mechani-

cal work, farm work, work with animals. In the replies from 90 freshmen mechanical 

work was rated first or second 82 times out of a possible 200, which is three times as 

often as chance would give, and over three times as often as was the case for a group 

of school superintendents at the same age. Out of 103 engineering freshmen who re 

ported on the matter of boyish activities, 91 had constructed on their own initiative 

mechanical or scientific devices such as cannons, telegraph lines, telephones, electric 

motors, arc lights, gasolene motors, lathes, steam engines, water wheels, boats, etc. 

None of the engineering schools at present record this type of information or make 

any systematic effort to use it or to interpret its meaning; nor do parents and elemen-

tary school teachers realize the importance of giving young boys and girls opportuni-

ties of expressing their innate mechanical sense in creative work. 

 Let no one imagine that the tests presented in the Appendix are a final solution of 

the college entrance problem.  They are but the beginning of an effort to proceed one 

step farther in the direction indicated by the development of college entrance systems 

during the past twenty years. A large amount of experimentation and cross checking 

among different schools must be done to determine the validity of this type of test 

and to interpret the results of its use. Enough has been done to show that the princi-

ples of testing here presented are worthy of further investigation and that methods of 

procedure have been indicated that point to a safe road of real progress. As these 

principles are applied and these methods are developed by many observers in many 

schools, it may be possible to liberate college entrance from its present fetters and 

place it on a more rational and scientific basis. 

 The effect of such a development on the quality of preparation for college is sure to 

be most beneficial. College professors are at present the only teachers in the school 

system who are permitted to teach without one hour of special training for teaching. 

With mastery of their respective subjects and the highest idealism and sincerity, they 

devise specifications for the content of high school courses, and then enforce those 

specifications directly or indirectly by entrance examinations that do not really meas-

ure ability or create the best conditions for its development. When the colleges are 

able to define their admission requirements in terms of abilities as measured by ob-

jective tests, instead of in terms of subject-matter covered, it may be possible to lift 

the great incubus of ignorance that now oppresses the secondary schools, to supply 

the colleges with freshmen much better trained and sorted on the basis of ability, and 

to reduce the mortality of 60 per cent to a more reasonable figure. 
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THE TIME SCHEDULE 

WHEN faculties were small and the number of subjects that seemed essential were 

relatively few, the problem of the time schedule was a fairly simple one. All the nec-

essary courses could be arranged in a compact and consistent program that required 

the student to carry not more than 18 credit hours of work at one time and to study 

not more than four or five different subjects each term. But as science expanded and 

became more intricate, specialization was unavoidable. By 1890 the civil engineering 

student had to choose either general civil engineering, or railroad engineering, or 

topographical engineering. Similarly the prospective mechanical engineer had to de-

cide by the end of his second year whether he would follow the general curriculum in 

mechanical engineering, or one that specialized in marine, in locomotive, or in mill 

engineering. Since 1890 this process of subdivision and specialization has advanced 

rapidly, pushing the student’s choice of a specialty back into the first year, increasing 

the required number of credit hours in some cases to as many as 27, and at times 

loading his weekly schedule with from eight to thirteen different subjects. 

 If there is any one point on which practising engineers and teachers of engineering 

are in substantial agreement, it is that at present this specialization and subdivision of 

curricula has gone too far. The congestion that inevitably results is universally recog-

nized to be a fruitful source of confusion to the student and a real cause of superficial 

work. Attention is distracted from mastery of the subject and encouraged to seek 

ways and means of securing passing grades with minimum effort; so that a rigid and 

exacting department is likely to get more than its share of time and labor. There is too 

little time for persistent thinking, too little opportunity to realize the joy of achieve-

ment, and too much inducement to join in the scramble for credits. 

 There are two obvious methods of relieving congestion, namely, more time or few-

er subjects. A few years ago Harvard University and the University of Missouri ex-

panded their engineering curricula to six years, partly to relieve congestion and partly 

to raise engineering to the rank of a graduate professional study like law and medi-

cine. Both of these efforts have been abandoned, but Columbia has undertaken to 

continue the experiment. The University of Wisconsin for a number of years offered 

a five-year curriculum along with the regular four-year one, but this was given up 

because it proved to be a haven for “lame ducks” who could not accomplish the regu-

lar work in four years. Cornell still maintains a five-year curriculum and is much 

pleased with its operation. The five-year curriculum at Yale consists of two years of 

specialized graduate work added to the regular three-year curriculum that leads to the 

Ph.B. degree in engineering. 

 In the matter of fewer subjects a number of the best schools are succeeding in keep-

ing the required number of credit hours below 18 per term, as at Cornell, Ohio State,
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Illinois, and Wisconsin. Under these conditions the tendency to congestion is relieved 

to a certain extent by having a fairly large number of specialized curricula and allow-

ing some small choice of electives among the technical subjects in the last two years. 

Both of these devices really result in a reduction of the amount of subject-matter by a 

limitation of its range, and thus bring the schools face to face with the charge of train-

ing narrow specialists instead of broad gauge professional men. 

 Thus far neither more time nor fewer subjects have as a matter of fact cured con-

gestion. For the amount to be learned in every field is so vast and is increasing so 

rapidly that whenever a professor gets more time for instruction, he usually tries to 

cover more ground; and this tendency is supported by many of the younger alumni, 

who keep suggesting the addition of this that, or the other bit of information that was 

not given them in college, but would have been useful to them on their first jobs if it 

had been included in the curriculum. This pressure to keep up to date, combined with 

the natural reluctance of every teacher to abandon material he has once worked up for 

presentation to the class, is fairly certain to produce congestion even after it has been 

temporarily relieved. The real causes of congestion, however, with its well- known 

symptoms of mental confusion, superficiality, and scurry for credit, lie deeper. Their 

roots penetrate to the methods by which curricula are constructed and the educational 

conceptions on which they are based. 

 Engineering curricula were originally organized on a very different basis from 

those in other professional schools. The earliest instruction in law and medicine was 

given by the apprenticeship system. As these professions grew, it was found conven-

ient to gather the apprentices together in groups for class instruction by some particu-

larly well-qualified practitioner. These classes were then organized into schools con-

trolled and managed by practitioners, who, until recently, also gave the greater part of 

the instruction on a part time basis. The first law and medical schools at universities 

were practitioners’ schools appended to, but never fully assimilated by, the institu-

tions to which they were attached. Full time college professors of medicine and law 

are of relatively recent date, and even now much of the instruction in these subjects is 

still given in university schools by practitioners on a part time basis. The curricula of 

these schools, therefore, developed out of apprentice courses and were framed by 

men in daily contact with professional work. 

 In engineering, on the other hand, altho the apprenticeship method of training was 

originally employed and is still in extensive use, —about half of the professional en-

gineers in America to-day being shop-trained men (page 19),—this system of training 

never developed into engineering schools to any extent. The first engineering schools 

were founded by colleges, their professors were college-trained men, and their cur-

ricula were devised by college faculties; professors also gave practically all the in-

struction with very little assistance from practitioners. For this reason the first tech-

nical schools had a serious struggle to prove that engineers could be trained in 

schools. Even now technological schools are classed in the Reports of the United 

States Bureau 
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of Education with universities and colleges; while schools of law, medicine, theolo-

gy, dentistry, pharmacy, and veterinary medicine are classed together as professional 

schools. 

 This dominance of the college of liberal arts in engineering schools has undoubted-

ly been a powerful factor in the development of the engineering profession. The em-

phasis still placed in the curriculum on pure science, pure mathematics, and the hu-

manities, in spite of numerous vigorous attacks on them, is evidence of the extent to 

which the ideals of the American college still dominate the technological schools. 

But tho this protection of the conception of culture within the engineering schools has 

tended to liberalize them and to prevent their becoming too materialistic, it has not 

been an unmixed blessing; for that conception has been slow to adapt itself to the 

changed conditions produced by engineering, and has tended to preserve several fun-

damental practices that are now regarded as the probable causes of congestion and of 

other serious difficulties in current curricula. 

 Prominent among these outgrown practices is the method of constructing and 

changing curricula. When the students’ hardships have become so obvious that they 

can no longer be ignored, a committee is appointed to study the problem and suggest 

changes. This committee usually requests each department to submit a statement of 

its requirements and desires; and, while this is being prepared, compiles a table show-

ing how much time is allotted by other schools to each of the subjects included in the 

curriculum. The departmental statements are also compiled so as to show how much 

time is needed to fulfil all their requests. Generally the number of topics each de-

partment considers essential is so large that the hours required to cover them all 

would be double or triple the number available. The various claims are then dis-

cussed in committee, reduced within reasonable limits by a process of cut and fit, and 

the result reported back to the faculty. In the faculty debate that follows, each de-

partment presses its claims for more hours, and numerous changes are suggested, de-

bated, and ordered made or not made by a majority vote. When the matter is settled 

each department takes the time awarded to it and uses those hours in any way it likes. 

In short, distribution of time among the departments is usually regarded as the chief 

function of the faculty. Respect for departmental autonomy forbids any investigation 

or scrutiny of the aims, the methods, or the results of the work of any one department 

by the faculty or by any of its committees. 

 Under present conditions the members of the various departments in engineering 

schools are selected in the main because of their abilities as specialists in their re-

spective fields. Since every competent specialist is always an enthusiast over his spe-

cialty, there is no limit to the number of hours he would like to fill or the amount of 

information he would like to impart to the students, especially when the work is con-

ducted by the lecture method. Therefore congestion  of the curriculum is  inevitable 

so  long  as  each  department  remains  sole arbiter of  the  content of  its courses, 

and there is no coordination among departments with respect to the amount and the
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nature of the subject-matter in courses, and no scrutiny of the results of each depart-

ment’s work by some agency outside the department. The problem of congestion is 

evidently not merely a question of the time schedule, but leads at once to such specif-

ic departmental questions as: What is the minimum mathematical equipment essential 

to every engineer, no matter what his special line may be? What fundamental princi-

ples of mechanics must be mastered by every engineer? In developing a mastery of 

these principles of mechanics, what coordination of work among the departments of 

mathematics, physics, mechanics, and engineering is most effective? Until such in-

terdepartmental investigations and experiments are the rule everywhere, instead of the 

exception, congestion is likely to persist and grow more and more disastrous. 

 Investigations and experiments of this type are already under way at several 

schools. Thus at the Naval Academy an effort is being made in the postgraduate de-

partment to coordinate mathematics with engineering by scanning the subject-matter 

of both to eliminate non-essentials, so as to make the treatment of each topic as brief 

as is consistent with clear understanding; there is also an earnest effort to arrange the 

material in both departments so that the presentation of the practical by the engineer 

and of the theoretical by the mathematician come at about the same time and com-

plement each other.’ Similarly at Cincinnati, many of the problems used in the math-

ematics classes are actual industrial problems brought in by the students from their 

practical work in commercial shops; and the work in English is so organized that 

theme writing gives outlook to the technical courses and technical reports are also 

exercises in English composition. 

 Important as are experiments of this sort in indicating present tendencies, their ben-

efits are limited to the schools where they are made, because their results are not test-

ed by methods easily recognized as valid, and the conclusions derived from them are 

not expressed in terms intelligible and convincing to all. To be widely effective, ex-

periments must be checked by tests that are as free as possible from the personal 

equation and the errors of subjective judgment on the part of the experimenter. There 

fore, ultimately, the problem of congestion leads, like the problem of admission, to 

the need for more impersonal and generally intelligible methods of testing and meas-

uring the growth of abilities. The invention and perfection by experiment of objective 

tests of ability seems to offer the most promising road to progress toward a type of 

instruction that places less emphasis on information and more on ability to use infor-

mation intelligently—toward greater cooperation among departments and less of the 

specialized exclusiveness of departmental autonomy, and hence toward the relief and 

the ultimate cure of congestion. This question is discussed further in the following 

chapters. 

 The seriousness of the problem of congestion has been widely recognized. There is; 

however, another closely related and equally important problem the significance of 

which has not been so fully apprehended; namely, the order of sequence of the various

  
1 R. E. Root: Engineering Education, vol. vii, pages 190—196, December, 1916. 
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courses. In this matter the 1849 curriculum at Rensselaer (page 12) imported a 

French style that has been followed implicitly ever since. The conception underlying 

this and all later curricula is that engineering is applied science; and therefore, to 

teach engineering, it is necessary first to teach science and then to apply it. In con-

formity with this conception the first two years of college work are almost universal-

ly devoted wholly to learning the fundamental principles of chemistry, physics, and 

mathematics. Only when the student has passed a satisfactory examination on these 

fundamental principles and their various non-technical applications is he permitted to 

work on engineering projects. 

 Some of the peculiar effects that result from this universal habit of teaching first the 

theory, then the practice, are now beginning to attract attention. Instructors who are 

close to freshmen and sophomores tell how bewildered and discouraged the under 

classmen often are because, having come to college to study, as they supposed, the 

dynamic agencies for doing the world’s work, they find themselves merely continu-

ing their elementary and high school drudgery with books and abstract symbols. 

Doubt less some of the freshman elimination is due to this discouragement, and it has 

been suggested that the drop in student grades in the sophomore year (page S3) may 

be attributed mainly to this cause. The question has also been raised whether failure 

to make good in these preliminary studies as taught, or to succeed in the tests as giv-

en, is really conclusive evidence of lack of engineering ability. 

 Several of the schools visited have found that the introduction of “orientation” 

courses and talks by practising engineers on the real experiences of the engineer’s life 

are effective means of increasing the interest and strengthening the morale of the 

freshmen. A moving picture of an engineering enterprise in action is not without re-

sults. These realistic portrayals of the technique of practice lend reality to the book 

work and arouse the professional ambitions of the hearers. The actual participation in 

technical work under the cooperative plan at Cincinnati, Akron, and Lafayette, the 

summer vacation work in industrial plants, and the summer surveying camps all tend 

in the same direction. 

 Recently the conception that beginners might learn more quickly and thoroughly if 

real experiences were coordinated with their study of theory, has been carried one 

step further by introducing real work into the class work itself. Perhaps the most 

striking of the several recent experiments of this kind is that conducted by Professor 

C. C. More of the University of Washington. Mechanics is generally placed in the 

third year so that the students may be well prepared for it in physics and calculus. 

The conventional course begins with the statement of definitions and the deduction of 

general principles, followed by the solution of typical problems. Professor More be-

gins by asking the student to report on the safety of the sheet piling in a certain coffer-

dam whose dimensions and location are pictured and described. Theory and principles 

are worked out and proved as they are needed to solve the problem. Calculus and phys-

ics are freely used. This complete reversal of the conventional order proved so success-
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ful that last year the same course was tried, including the calculus, on one section of 

engineering freshmen, who mastered it with little more trouble than the juniors. As a 

result, the entire engineering faculty now sanctions this order of topics from applica-

tion to theory as a great improvement over the older conventional one. Other similar 

experiments are discussed in subsequent chapters. 

 Altho the engineering faculty at the University of Washington approve of Professor 

More’s new order for teaching mechanics, other instructors in mechanics who cannot 

personally observe the results will be slow to follow or inaugurate similar experi-

ments because there are no generally intelligible objective tests and scales of ability 

in terms of which the results may be expressed. For this reason experiments with the 

curriculum, either to relieve congestion or to secure more enthusiastic and intensive 

work thru variations in the nature and the order of the topics, have at best a limited 

effect.  So this problem too settles down ultimately to one of inventing and defining 

tests and scales to measure variations in ability. Further uses for such scales are ex-

plained in Chapter XI. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Cf. W. E. Duckering: Engineering Education, vol. iii, pp. 518-535, May, 1917. 
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CHAPTER X 

CONTENT OF COURSES 

ONE of the most striking and universally recognized features of the technological 

schools is their lack of agreement on the content of courses that bear the same or sim-

ilar titles. Some of the more marked differences in elementary chemistry, English, 

drawing, and shopwork have been mentioned in Chapter VII (page 88). Obviously 

the 52 hours of calculus at Rensselaer cannot have the same content as the 216 hours 

of calculus at the University of Florida (page 24). Some of the courses in mechanics 

place great emphasis on the absolute system of units while others use only the engi-

neers’ units. In the treatment of descriptive geometry the number of essential prob-

lems varies from 27 to 86 and the number of fundamental conceptions from 6 to 12. 

The teachers of each subject not only do not agree on what equipment in their subject 

is essential for an engineer, but they have not yet taken the first step toward such an 

agreement, namely, the definition of the criteria that must govern the selection and 

the organization of the content of their several courses. 

 The prevailing wide diversity in the content of courses is clearly a necessary result 

of the general confusion as to ends, aims, methods, and rating of instruction. But 

while the many strong points in the present system are duly appreciated, it is gradual-

ly becoming evident that in training men for so definite a vocation as engineering, in 

which the various elements—science, mathematics, language, economics, and hand 

work—are so intimately interrelated, some agreement as to aims and some coopera-

tion among departments in determining the content of courses is absolutely essential. 

That this need is recognized at all the schools is evidenced by the numerous common 

complaints among departments. The departments of engineering insist that the pre-

liminary work in mathematics and physics is unsatisfactory because students who 

have passed these courses cannot use either mathematics or physics intelligently in 

the later technical work. Conversely the teachers of mathematics and physics claim 

that the students are poorly prepared in these subjects in high school and that the en-

gineering departments make unreasonable demands. All the other departments decry 

the work in English and foreign languages as inefficient and wasteful of the students’ 

time. 

 To remedy these well-recognized difficulties, conference committees are frequently 

organized and friendly meetings are held, in which each side explains its point of 

view. The resulting changes, however, are few. At one school a professor of mathe-

matics voluntarily attended numerous classes in engineering subjects to get some no-

tion of the mathematical needs of these courses. The course he devised on the basis 

of the information thus secured was so successful that he was called to a more re-

sponsible position in another institution; yet his colleagues did not carry on his exper-

iment. At another school a professor of chemistry conducts a volunteer class in Ger 
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man in order that the students in chemistry may have a chance to get the practical 

mastery of German that every chemist needs. One professor of civil engineering and 

one of electrical engineering were found giving regular instruction to volunteers in 

English composition, both written and oral. 

 In spite of the fact that deviations from established practice in teaching are not en-

couraged, so that there is an almost universal disinclination to make changes, a few 

import experiments are being made for the purpose of discovering more appropriate 

content for courses. Prominent among these are two in mathematics, one at the Mas-

sachusetts Institute of Technology and one at the University of Wisconsin. In both 

the aim has been to construct a single two-year course in mathematics in place of the 

customary but somewhat unrelated courses in algebra, trigonometry, analytical ge-

ometry, and calculus. Both courses have been published in textbook form; the former 

in Woods and Bailey’s Course in Mathematics 1 and the latter in Slichter’s Elemen-

tary Mathematical Analysis 2 and March and Wolff’s Calculus. 2 While the particular 

categories under which the various topics are arranged are very different in these two 

courses, the underlying conceptions are similar, in that both attempt to reorganize the 

content of the mathematics courses for the purpose of securing a more logically co-

herent presentation. Each is a consistent working out of a mathematician’s concep-

tion of the mathematical equipment needed by every engineer. This emphasis on log-

ical sequence has undoubtedly a fascination to certain types of mind— teachers of 

mathematics, for example. Its effectiveness with the great majority of students may 

well be questioned, especially when the logic is expressed in curves and symbols 

carefully detached from technical applications. Both of the courses just considered 

claim to pay particular attention to applications, but these are mostly of the non-

technical variety. In the Woods and Bailey text, out of 2Q88 problems for drill in the 

application of mathematical principles, only 105 even mention material things; while 

in Slichter’s book, only 146 out of 11O problems discuss concrete realities. 

 The experiments just described are typical of one method of attacking the problem 

of finding more significant content for engineering courses.  The emphasis in reor-

ganization is placed on more logical and coherent sequence of topics and a better ad-

aptation to modern scientific theories, with little attention to the introduction of engi-

neering content into the mathematical forms treated.  To some extent the con tent of 

courses in physics and chemistry is being reorganized into more logical and coherent 

presentations of current kinetic and ionic theories of matter.  The methods of instruc-

tion followed in experiments of this type are usually much the same as those of the 

old standard courses. 

 A second type of reorganization of content is being worked out by Professor H. M. 

Goettsch at the University of Cincinnati.   After sixteen weeks of preliminary training 

very similar to that ordinarily given in courses in elementary chemistry, the freshmen 

work in the laboratory from 8 a.m. to 4.30 p.m. for ten weeks solving problems     

  
1 Two volumes. Gino & Co., 1907.  2 McGraw-Hill, 1914. 
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of industrial chemistry. Projects such as “Make baking powder and determine wheth-

er it is better and cheaper than any you can buy” are assigned without any instruc-

tions or references, and the student is required to work out his own salvation in the 

library and the laboratory. In the period of ten weeks he completes a number of these 

projects covering a wide range of topics, but little effort is made to present the topics 

in logical or any other sort of orderly sequence. Much emphasis is placed on synthet-

ic work and on the cost of a given product by different processes; while chemical 

analysis and the ionic theories of matter, which usually occupy the centre of the stage 

in chemistry courses, here take a subordinate place. The course in mechanics devised 

by Professor C.C. More at the University of Washington (page 58) is another exam-

ple of this type of reorganization of content in which the logical sequence of topics is 

subordinated to project work, and theory is evolved from rather than illustrated by 

problems and experiments. Professor R. M. Bird conducts his course in elementary 

chemistry at the University of Virginia on this plan with great success. 

 The content of courses of this type is clearly determined by considerations both of 

logical completeness and of pedagogical vigor. For a series of interesting projects 

that does not eventually compel the student to work out a fairly complete conception 

of the large theories and the important principles of chemistry is obviously inade-

quate, no matter how enthusiastic the students are in their work. On the other hand, 

altho the suggestion that an effective course can be constructed as a series of appar-

ently disconnected projects comes as a shock to those who have grown up with logi-

cally rigorous courses, the value of the enthusiasm engendered by well-chosen pro-

jects must not be overlooked. Our most valuable information and training come from 

working out projects that are really worth while; and if this method works in life, 

why not in school? Especially since in educational institutions it is always possible to 

organize significant projects into a connected series that leaves a well-developed 

conception of the whole subject in the student’s mind. This has been accomplished in 

the courses just mentioned, where the summing up is done after sufficient facts to 

warrant summaries have been secured. Their success should encourage others to fur-

ther experiments. The inclusion of considerations of values and costs in the content 

of these courses is also an element of enrichment that deserves careful attention. 

 Those who find a series of projects an unsatisfactory course of instruction, but who 

nevertheless wish to make the content real and of great value to the students may find 

many worthy suggestions in Professor R. H. Fernald’s course in power plants at the 

University of Pennsylvania. While the topics in this course follow one another in a 

logical sequence, they are chosen largely from engineering practice, and include 

much of the practical information every engineer must have when he goes to work. 

Many of the problems are actual cases that really occur in engineering, so that they 

appeal both to professional instincts and to the sense of values and costs—in fact, 

many of them are openly problems that deal with costs of operation and maintenance in 

working plants. Yet the course is not a mere mass of useful information; rather useful
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information is the vehicle for conveying to the student a firm grasp of fundamental 

principles and engineering methods of attacking and analyzing problems not only 

from the point of view of scientific theory but also with due consideration of the limi-

tations imposed by practice and by costs.  Professor Fernald’s course has been pub-

lished in textbook form, 1 and a number of other schools have adopted it and are fol-

lowing it with satisfaction. 

 The emphasis given in this course to the economic aspects of power plant problems 

is an encouraging sign of the dawning recognition of the profound importance of this 

side of engineering in technological schools. Most of the technical colleges now in-

clude short courses in economic theory, banking, contracts and specifications, etc.; a 

few give some small amount of practice in figuring costs and making bills of materi-

als from drawings assigned by the instructors. Here and there the attention of the stu-

dents is directed to the practical difficulties of construction and the controlling power 

of costs. There has always been and still is a strong aversion on the part of colleges to 

placing emphasis on the material and financial aspects of the engineer’s work. Yet it 

is a burning question whether the commercial bearings of each subject cannot be in-

troduced into every course in such a way as to increase enormously its use and its 

vitality without in the least impairing its inherent scientific value. The enrichment of 

the content of courses by judicious appeal to practice and costs is a problem that of-

fers rich opportunities for further experiment. 

 But if experiments of this sort are undertaken in large numbers in every school, 

there is obviously serious danger of actually becoming too materialistic, thereby sac-

rificing powers of abstract thought and humanistic ideals on which real progress ul-

timately depends. Efficiency in the mastery of materials without humane intelligence 

to guide and control it is now recognized in all civilized countries as a curse. Hence 

great care must be exercised in making these experiments, and every effort must be 

made to enforce the truth that mechanical efficiency, while essential to success, is 

servant and not master. The opportunity offered to the humanistic studies by this sit-

uation has already been perceived at a number of schools, and many efforts are being 

made to alter the content of the courses in English, in history, and in economics to 

meet the obvious need. Perhaps the most striking experiment with this aim is that 

now being made by Professor Frank Aydelotte in cooperation with the members of 

the department of English of the Massachusetts Institute of Technology. At this 

school English is a required subject for all students throughout the first two years. 

The first half of the freshman year is devoted to general composition, with the object 

of eliminating the more common errors of construction and of leading the student to 

see that excellence in writing comes not so much from the negative virtue of avoiding 

errors as from the positive virtue of having something to say. 

 The work of the second term of the freshman year begins with a class discussion 

of such questions as: What is the difference between a trade and a profession? What

  
1 R. H. Fernald and G. A. Orrok: Engineering of Power Plants, McGraw-Hill, 1916. 
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is the meaning of the professional spirit? What should be the position of the engineer 

in society in this new era of the manufacture of power—that of hired expert or that of 

leader and adviser? Is the function of the engineer to direct only the material forces of 

nature, or also human forces? Such questions readily arouse the interest of engineer-

ing students and bring on thoughtful discussion, in which different points of view are 

expressed by the students and debated with spirit. Essays by engineers are then as-

signed for reading, and after further discussion each student is asked to write out a 

statement of his own position on the mooted questions. These themes are criticized in 

personal conferences in which faults are corrected by asking the writer first what he 

intended to say; and, second, whether the sentence or phrase in question really says it, 

rather than by reference to formal rules of grammar and rhetoric. Those who have 

had experience with this work claim that once the habit of self-criticism from the 

point of view of the idea is established, the student makes astonishing progress in the 

ability to express himself clearly and independently; he gathers hints from all 

sources; and in ways too complex for pedagogical analysis he is more likely to ac-

quire such power over language as he is naturally fitted to possess, than he is by cur-

rent formal methods. For the achievement of this complex end, the conventional in-

struction in technique is too crude and clumsy to be of more than incidental use. 

 Having discussed the question: What is engineering? the class proceeds in the same 

manner to wrestle with such problems as: What is the aim of engineering education? 

What is the relation between power of memory and power of thought? Is there any 

connection between a liberal point of view and capacity for leadership? What quali-

ties do practical engineers value most highly in technical graduates? What is the rela-

tion between pure science and applied? What is the relation of science to literature? 

The authors read in connection with the discussion gradually change from engineers 

to scientists like Huxley and Tyndall, and then to literary men like Arnold, Newman, 

Carlyle, and Ruskin. The student seems to read this material with no less keen inter-

est than was shown for the writings of engineers; so that thru his own written and oral 

discussion of masterly essays each comes to work out for him self some rational con-

nection between engineering, with which he began, and literature, with which he 

ends. No orthodox point of view is prescribed; his own reason is the final authority. 

The aim is to raise questions which it may take half a lifetime to answer, but the 

thoughtful consideration of which will give a saner outlook on life and on his profession. 

 A similar experiment along analogous lines is being made by Professor Karl Young 

and his colleagues in the department of English at the University of Wisconsin. Re-

ports indicate that this type of course is a great success there also. The materials used 

in both these courses have been reprinted in book form for the convenience of the 

classes. 1 

 
1Aydelotte: English and Engineering, New York: McGraw-Hill, 1917; The Oxford Stamp, Essay X. New 

York: Oxford Press, 1917; Foerster, Manchester & Young: Essays for College Men. New York: Holt, 1913. 
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 The four typical experiments just described indicate that the reorganization of the 

content of courses is being attempted with a wide variety of aims, such as more logi-

cal coherence, better pedagogical organization, greater emphasis on the economic 

phases of the work, or a broader and more humanistic outlook. Many other aims are 

conceivable, and many combinations of these four are possible, so that there is unlim-

ited opportunity for the further experiments that are needed as a basis for the recon-

struction of the curriculum. The current method of framing curricula by first distrib-

uting the student’s time among the various subjects by faculty action and then allow-

ing each department to fill in its quota as it sees fit leads to the impossible conditions 

discussed in the preceding chapter. The way out lies in the direction of reversing the 

process; that is, first determining by cooperative faculty investigation what equip-

ment in each subject is essential to every engineer, and then requiring each depart-

ment to discover by experiment how much time is necessary to give adequate control 

of that essential equipment to the promising students. 

 In order to carry out this suggestion, entrance requirements must first be placed on 

some such basis as that described in Chapter VIII, so that the technical school can be 

reasonably sure that the majority of the students admitted show promise of success in 

engineering. Then for each of the fundamental subjects common to all engineering 

curricula an answer must be found by cooperation among all departments to the ques-

tion: 

 What is the minimum equipment essential to every engineer, no matter what spe-

cialty he may eventually choose? The answers to this question must be stated in 

terms of ability to accomplish rather than in the customary terms of topics to recite; 

for example, the familiar “algebra through quadratics” must read “ability to make 

algebraic computations as difficult as required in solving for x in 

 
x+a   _    x -a   _    __x2__   

=  1” 

x -a           x+a           a2-x2       
 

After such statements of the minimum essentials have been secured, the respective 

departments will be able to construct their courses intelligently and to devise objec-

tive means of testing their progress. 

 There are at present two serious obstacles to carrying out the plan here proposed. 

One is the reverence for departmental autonomy, which makes all departments reti-

cent about making suggestions to one another and inclines each department to regard 

any suggestion from another as unwarranted tampering with vested rights rather than 

as an intelligent effort to benefit the students. The other is the lack of generally intel-

ligible and transferable scales and methods of testing. These two obstacles deprive 

such experiments as are being made of the greater part of their potential usefulness, 

— the former by limiting the scope of the experiment by the bias inevitable to every 

specialist, and the latter by making it impossible for the experimenter to state his 

conclusions in terms that are convincing to others. The chances for real progress in 

vitalizing the content of courses are increased in proportion as departments cooperate 
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in defining the minimum essentials and as scales of ability and methods of testing are 

liberated from the errors of individual judgment. It is here that the teacher has his 

greatest opportunity for creative work; for when the content of a course is well cho-

sen and the subject-matter is effectively organized to meet both the scientific and the 

human requirements, the game is worth the candle for the student and he plays it with 

energy and zest. 
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CHAPTER XI 

TESTING AND GRADING 

ABOUT half of the schools visited grade students on a numerical scale of 0 to 100, 

with pass marks varying from 50 to 70. Two grade on a scale from 0 to 4, one having 

3 and the other 2 for the passing mark. The remaining schools ostensibly grade on 

literal scales (with per cent values attached); but of these, three have three grades 

above pass, designated respectively by A, B, C, or M, P, C, or C, P, L; and two have 

four grades above pass, indicated in the one case by A, B, C, D, and in the other by 

D, G, P, N. As a result, whenever a student transfers his credit from one school to 

another, it is very difficult to evaluate his record and determine his status in the insti-

tution to which he comes. Tho all student grades are apparently reducible to numeri-

cal values, a grade of 88 is hard to interpret even when you know the school and the 

instructor that gave it, because each school and each instructor has a personal equa-

tion in grading. 

 After one year’s experience with a group of students, a teacher of mathematics, for 

example, undoubtedly possesses more information concerning the mathematical in-

terests and abilities of these students than can possibly be ascertained by a few hours 

of examination or testing. But his knowledge is largely in the form of personal expe-

rience and intuitions based thereon, which cannot be expressed in the usual record 

blanks and so is seldom transferred to other departments. The knowledge now pos-

sessed by the teachers in a school of engineering, tho abundant, is not accessible thru 

records; but is segregated in departments and individuals, and confused by personal 

equations. Even tho ability to secure high grades in school and college seems to be a 

stable characteristic of an individual (page 36), employers have long since learned 

that college records are precarious guides in selecting men for jobs. 

 About ten years ago Professor Max Meyer of the University of Missouri started a 

campaign to eliminate the personal idiosyncrasies of individual instructors from aca-

demic ratings by requiring every professor to distribute his grades over his classes 

approximately according to the probability curve. It was pointed out that when all the 

students at a university are arranged in the order of their average grades, about fifty 

per cent are found grouped about the middle grade, with about 25 per cent higher and 

25 per cent lower. Hence the University of Missouri defines its grading system thus: 

“In classes sufficiently large to exclude accidental variations, approximately 50 

per cent shall receive the grade M (medium); to the great majority of the 25 per 

cent above M the grade S (superior) shall be given; and to the few most excellent 

students the grade E shall be assigned; the majority of the 25 per cent below M 

shall receive the grade I (inferior), and the minority shall be given the grade F 

(failure).” In order to render the grading significant to the students, 30 per cent
  
1 Hyde: Proceedings of the Society for the Promotion of Engineering Education, vol. xxi, p. 175, 1913. 
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excess credit is granted for all work done with a grade of E, 15 per cent excess for 

work of grade S, and a 2O per cent reduction of credit is made for work of grade I. 

The results of this experiment at Missouri and of similar investigations at other 

schools indicate that considerable progress is being made toward reducing the num-

ber of professors who either mark most of their students A or else fail a large per-

centage of them. The mere presentation without comment to each member of the fac-

ulty of his own grade distribution curve superposed on the average curve for the 

whole institution has been found to reduce abnormalities in grading without discus-

sion or faculty action. Clearly this work is developing in the same direction as are the 

entrance requirements (page 49); namely, toward a reduction of the errors in grading 

that result from personal equations. There is need and opportunity for further effort to 

stabilize the distribution of grades along the lines of this experiment. 

 The study of the distribution of grades is now expanding in the direction of search-

ing for the reasons for strikingly anomalous curves. In the schools visited a number 

of cases were found in which from 50 to 75 per cent of the students who graduated 

had received grades just slightly higher than the pass mark (page 34). Experience 

shows that when so large a fraction of a class receive such low grades there is some 

serious difficulty, which can usually be removed by investigation (page 35). As a 

result of numerous such studies it appears that the grading systems in current use 

possess several inherent characteristics which have been accepted so long as a matter 

of course that their normal effect on the distribution of grades seems to have been 

largely overlooked. Prominent among such characteristics are the convention of 

granting the same amount of academic credit for all grades of work above the pass 

mark, and the habit of leaving the definition of the basis of testing and grading in 

each subject wholly in control of the instructors who do the teaching. 

 The harmful influence of both of these characteristics of current marking systems is 

very generally recognized. Every college teacher knows well that many of the ablest 

students regard it as an evidence of poor management on their part if they get grades 

very much above the pass mark. College authorities have sought to break up this stu-

dent tradition by offering academic honors of one sort or another, like Phi Beta Kap-

pa, Tau Beta Pi, Sigma Xi, or honorable mention on the commencement program. A 

further and more effective step has been taken by the University of Missouri in grant-

ing excess credit for high grades, as just described. Other schools are trying the ex-

periment of adding to the regular grading a system of honor points, so framed as to 

prevent the student from graduating on mere pass grades. But even these devices do 

not render the grades intelligible to employers and to other colleges, nor do they al-

ways inspire the student to maximum effort. The West Point grading system (page 

p28), on the other hand, does act as a real incentive to good work and as a genuine 

support for the maintenance of the honor system. 

 The reasons why grades under present conditions do not act as real incentives to 

good work are very similar to the reasons why payment of wages to workers on the
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basis of time spent at work fails to result in maximum output and even tends to scale 

down the efficiency of the skilful to that of the slothful. So long as the credit in both 

cases is determined mainly by the time consumed, the only accomplishment demand-

ed being a certain minimum below which the job cannot be held, so long there is no 

real incentive to speed up and show mettle. Hence workmen “soldier” and even de-

liberately unite to deceive their employer as to how much work an able and ambitious 

worker can do in a day; and students have been known to practise analogous tricks on 

professors. All of which has a decided tendency to concentrate grades in a small area 

on the safe side of the pass mark. The device of granting bonus credit for high grades, 

while it improves the situation, is not likely to effect a real cure until grades are a tru-

er measure of achievement than is at present the case. For the students know as well 

as anybody that college grades are very ineffective measures of the type of ability 

that wins recognition in the world’s work —they know of too many notable examples 

that fortify their own personal observations and convictions in the matter. 

 The real cure for “soldiering” in college work as already been found and put into 

practice in one department, namely athletics. There the students submit gladly to rig-

orous discipline and exert themselves to the utmost in the games because the work 

appeals to them as thoroughly worth while and the score is a valid and objective mea 

sure of achievement. In their studies, on the other hand, the game does not always 

seem worth the candle, and their scores often depend as much on their ability to con 

form to the personal points of view of their instructors as on their real achievement in 

mastering materials. For under present conditions each department—frequently each 

individual instructor—sets all examinations and tests and determines the relative 

merits of the students by means of individual, subjective standards. College boys un-

derstand this perfectly, for it is not unusual to find bright ones among them who win 

high grades by studying the instructor rather than the subject. Obviously here, as in 

the case of admission, the need is for more objective methods of measuring student 

progress and more assurance that the tests used are tests of the abilities the engineer 

needs to have developed, rather than of something else the exact nature of which is at 

best vague, uncertain, and undefined. 

 The analysis of a large number of the examination papers and quiz questions in 

current use reveals the chief reasons for the vagueness and uncertainty of the results 

secured by conventional methods of testing. A large proportion of the questions can 

be answered by reciting or writing memorized words, phrases, or equations. How can 

the instructor decide whether correct answers to these questions mean merely a reten-

tive memory, or whether they indicate clear understanding of the relations involved, 

or an ability to use them in practice? Again, many of the questions call for verbal de-

scriptions of apparatus or processes. The answers to questions of this sort are fre-

quently so ambiguous that it is impossible for the teacher to tell whether the students 

do not understand the subject, or whether they are unable to express themselves. 

Hence different instructors make estimates that may vary from 30 to 80 on the same
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paper; and there are no means of deciding as to which estimate is best. Finally, little 

effort is made to arrange the questions in their order of difficulty, by placing the easi-

est first and the most difficult last. Occasionally some questions are given greater 

weight than others, but the assignment of weights is apt to be an act of arbitrary 

judgment on the part of the instructor. 

 Since tests control teaching, it is obvious that one of the most effective methods of 

attacking the teaching problem is thru the study of tests. For the, purpose of making a 

beginning of such a study aimed at removing some of the ambiguities of cur rent ex-

amination practice, Professor E. L. Thorndike of Columbia University devised for 

seniors in electrical engineering a series of objective tests, analogous to those used in 

his experiments with freshmen (page 49). In planning the tests, and selecting the 

types of activity that seemed most likely to reveal abilities essential to engineering, 

Professor Thorndike was assisted by a volunteer committee consisting of Messrs. E. 

B. Katte, Chief Electrical Engineer of the Grand Central Terminal, New York; L. D. 

Norsworthy, Professor of Civil Engineering at Columbia University; F. P. Keppel, 

Dean of Columbia College; J. W. Roe, Professor of Mechanical Engineering at Shef-

field Scientific School at Yale; the secretary of the Carnegie Foundation; and the au-

thor of the present study. Descriptions of the tests used in this experiment are given 

in the Appendix (pages 117, 118). 

 While some of these tests appear at first sight very similar to ordinary examina-

tions, they are, as a matter of fact, constructed on very different principles. In the first 

place each test is intended to measure a specific ability, such as arithmetical compu-

tation, geometric construction, paragraph reading, understanding of words, mechani-

cal dexterity, or comprehension of diagrams. Each of these is a single activity, altho 

requiring a complicated coordination of psychological processes. Then the tasks are 

so selected that their accomplishment can be indicated with little or no use of words, 

so that ability to perform the task is not confused with powers of verbal expression; 

and the errors of personal judgment in deciding whether an answer is right or wrong 

are reduced to a minimum. Because of this independence of the personal equation, 

results obtained by these tests at different schools, or at the same school at different 

times, are comparable with one another. Moreover, tests of this kind are capable of 

indefinite extension by alternative tests that give commensurable results. In this way 

the danger of cramming for any one set test may be avoided; since after the success-

ful type has been found, it is a relatively simple matter to construct ten or twenty al-

ternate tests on the same pattern. Again, the successive tasks on each test are ar-

ranged in the order of difficulty, beginning with one that can be correctly met by al-

most all students of the degree of training in question, and progressing gradually to 

one that can be done by only a very few of the most gifted. Such a test is a scale 

up which the student climbs to the extent of his ability in the particular type of 

activity under scrutiny; so that, when the test is well constructed, his relative rank 

is determined without ambiguity by the difficulty of the task he can successfully
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master, rather than by an estimate of how much credit must be given for a partially 

completed task. 

 Thru the courtesy of Mr. C. R. Dooley of the Westinghouse Electric and Manufac-

turing Company at Pittsburgh, these tests were tried out on a group of forty engineer-

ing graduates employed by that company as graduate apprentices. These apprentices 

are given very varied tasks, are observed by superior officers with a view to perma-

nent employment, and are given ratings on a series of essential characteristics by eve-

ry foreman under whose direction they work. The essential characteristics used in 

these ratings are: physique, personality, knowledge, common sense, reliability, open- 

mindedness, tact, initiative, attitude, originality, industry, enthusiasm, thoroughness, 

system, analysis, decision, English, and ability. In addition to these ratings by fore-

men, the two officers of the educational department of the company. who are in clos-

est touch with the work of the apprentices rank them after they have been there about 

nine months, for general ability and for order of choice for employment by the com-

pany. The apprentices themselves were also asked to rate one another, as far as ac-

quaintance permitted, for promise of success in engineering. 

 The ratings thus obtained from the records by foremen, the estimates by the educa-

tional experts, the opinions of the apprentices themselves, and the tests were com 

pared in many different ways. Unfortunately the college records of the apprentices 

could not be used, because so many different colleges with incommensurable grading 

systems were represented in the group. As a result of the analysis it appeared that the 

foremen’s ratings would give as good a record if they used the six qualities— ability, 

analysis, originality, thoroughness, enthusiasm, and common sense — instead of the 

eighteen just mentioned. The order determined by the ratings by half the foremen 

agreed fairly well with the order determined by the ratings of the other half (correla-

tion coefficient .48); and the order of merit in the judgment of one expert agreed fair-

ly well with the order according to the judgment of the other (correlation coefficient 

.53); but the foremen’s order and the expert’s order did not agree so well (correlation 

coefficient .24). The correlation of the order given by the tests with the foremen’s 

order was also .24 and with the expert’s order .37. 

 The orders of merit given by the four different ratings were finally combined into a 

single order, which most probably represented the best order as determined by all 

available information. The individual orders were found to correlate about equally 

well with this composite (correlations are: foremen’s records .73, tests .71, apprentic-

es .70, experts .60). Hence in this case the tests, which require eight hours’ time, ap-

pear to give as reliable an order of merit as do the judgments of either the experts, the 

foremen, or the apprentices themselves after six months of experience with the men 

in a specially well-organized industrial company. This does not mean that these tests 

are infallible, for even a perfect measure of achievement under one set of conditions 

would probably be in error, just as the judgment of experts would be in error, as a 

prophecy of later years of work under different conditions. The subsequent  
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careers of those tested must be followed for a number of years and many other simi-

lar experiments must be made before the validity of any set of tests can be definitely 

established. It does mean, however, that, iii a given case, a systematic test of eight 

hours may detect engineering ability and prophesy engineering success as effectively 

as expert personal inspection of actual work over a period of several months. It is this 

possibility that makes experimentation with this type of test so well worth while. The 

tests herewith presented are in no sense final. They are first approximations, requir-

ing much study and trial for their perfection. Those who have studied these experi-

ments closely are convinced, however, that the method of attack here used is sound, 

and that progress in the direction here indicated is both safe and sure. 

 Many experiments with objective tests of the type here described have been made 

in recent years in elementary and secondary schools. Similar tests are being tried on a 

very extensive scale on the members of the new national army by Major Yerkes, the 

well-known psychologist, who has accepted a commission in the army for this pur-

pose. Industries, too, are beginning to look to these tests to guide them in the selec-

tion and placing of workmen, in the hope of reducing the labor turnover that is cost-

ing the country several hundred million dollars a year. Altho the movement is still in 

its infancy, enough has been done to forecast what may be accomplished by further 

scientific work in this field. In engineering, for example, it is conceivable that before 

long admission to college and achievement in college may be liberated from the 

bondage of personal equations as grading becomes less a matter of individual bias 

and more a valid record of actual accomplishment. Then college grades may be trans-

ferable among colleges; then academic marks may become significant to employers; 

then the results of educational experiments may be stated in convincing terms; and 

then students may come to respect their records and strive to beat them without artifi-

cial stimuli in the way of academic honors and credit bonuses. 

 The greater the number of schools that undertake experiments with tests, the more 

rapid the progress toward the attainment of these ends. It is not a question of merely 

superposing a few tests of the type described on the present examination and grading 

system. Such superposition may well be a first step; but ultimately it is a question of 

working the whole testing and marking system to a more objective basis, and this is a 

long and laborious task. For the final rating must include and express the enormous 

amount of information which teachers now gather about students by inspection of 

their work and by the regular examinations, quizzes, and reports, in terms that are 

intelligible for scientific and practical use. Then a rating becomes a safe instrument 

for vocational guidance, which is, after all, the fundamental problem of the schools. 

 When grading is conceived as an instrument of vocational guidance, rather than as 

an expression of the degree to which an individual has succeeded in conforming to an 

established order of things, more information is needed than can be secured from pre-

sent tests and examinations. It is a striking fact that while most schools grade merely
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on academic work, most industries rate men on personal traits like character, initia-

tive, tact, accuracy, responsibility, and common sense. This fact has led a number of 

schools to supplement their regular grades with estimates of personal qualities such 

as these. At Purdue, the University of Kentucky, Pennsylvania State College, and 

other engineering schools, elaborate records of personal impressions of students are 

kept on file and used with effect in guiding students into suitable positions. Usually 

the record card has the names of a number of the desired qualities printed on it, and 

the instructor is asked to place a grade mark opposite each. Sometimes each instruc-

tor does this in private, sometimes the grades are assigned after discussion in depart 

mental meetings. In either case considerable difficulty is experienced in selecting the 

qualities to be graded and in deciding on the proper grade to be given to each indi-

vidual for each of the qualities selected. Among the many schemes that have been 

devised for this purpose two seem to be particularly suggestive to schools of engineering. 

 The first of these schemes was devised by Professor W. D. Scott of the Carnegie 

Institute of Technology for the use of large business organizations in selecting em-

ployees and executives, and is now being used by the War Department at Washington 

for grading army officers. The qualities selected for grading in this case are: 1. Phy-

sique, including bearing, neatness, voice, energy, and endurance; 2. Intelligence, in-

cluding ease of learning, capacity to apply knowledge, ability to overcome difficul-

ties; 3. Leadership, including self-reliance, initiative, decisiveness, tact; and ability to 

command obedience, loyalty, and the cooperation of men; 4. Character, including 

loyalty, reliability, sense of duty, carefulness, perseverance, and the spirit of service; 

and 5. General value to the service as a drill master, a leader in action, an administra-

tor, and one who can arrive quickly at a sensible decision in a crisis. Each officer 

who grades candidates on these qualities is required to construct a personal scale of 

reference for each quality by writing down a list of five officers of his acquaintance, 

the first of whom seems to possess the specific quality in a preeminent degree, and 

the last of whom has as little of it as any one he knows. The third man is then select-

ed as a mean between the two extremes, and the second and fourth as means between 

the middle and the top men or the middle and the bottom men respectively. The vari-

ous grades are given numerical ratings from 15 for the highest to 3 for the lowest. 

The advantages of such scales are apparent, since it is obviously easier to place a 

candidate on the scale by comparison with other men, than it is to make a numerical 

estimate of such composite and abstract conceptions as intelligence or leadership. 

The method has proved so successful in operation that an Army Personnel Commit-

tee with Professor Scott in charge has been established as an addition to the Adjutant 

General’s office in Washington to supervise this and other activities involved in sort-

ing, grading, and testing men for all kinds of army work. 

 The second suggestive method of rating personal qualities as a help to vocational 

guidance has been used in the University of Cincinnati for a number of years. The 

characteristics selected for rating in this case are of a very different sort, and are ar-
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ranged in pairs of related opposites as follows: (a) physical strength—physical weak-

ness; (b) mental— manual; (c) settled—roving; (d) indoor—outdoor; (e) directive— 

dependent; (f) original(creative) —imitative; (g)small scope—large scope; (h) adapt-

able—self-centred; (i) deliberate —impulsive; (j) music sense; (k) color sense; (1) 

manual accuracy— manual inaccuracy; (m) mental accuracy (logic)—mental inaccu-

racy; (n) concentration—diffusion; (o) rapid mental coordination—slow mental 

coördination; (p) dynamic—static. These pairs of related opposites are printed on 

blanks, and each instructor is asked to express his judgment of each student by check-

ing one or the other of each pair. The independent votes of the instructors are summa-

rized in the central office. The method of using this type of rating is obvious. No one 

would think of advising a man of settled, indoor, dependent, self-centred, and static 

temperament to undertake a job as superintendent of construction on a large viaduct 

or bridge. 

 Under present conditions, when current testing and grading systems are more large-

ly estimates of the amount of static information possessed than of dynamic abilities, 

it is evident that ratings of personal characteristics and dispositions are essential for 

vocational guidance. Whether this will be so or not when grades have been made to 

express abilities, whether correlations will be found between various temperaments 

and various types of ability or not remains an open question for further study. In the 

meantime there is no investigation that is likely to give larger returns in fruitful pro-

gress than the scientific investigation of testing and grading systems; for tests control 

teaching, and objective records of achievement are one of the most potent means of 

releasing creative energy in both students and faculty. 
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CHAPTER XII 

SHOP WORK 

IN American technical schools shopwork still occupies a rather anomalous position.  

Few teachers of the mechanic arts have been granted the title “Professor,” and the 

work itself is seldom recognized as being intrinsically of “university grade.” Yet no 

one denies that it is an essential element in the equipment of every engineer; and 

therefore it has been tolerated by engineering faculties and allowed to develop as best 

it could. As a result there is no agreement as to the purposes and methods of shop- 

work. Nearly every school has a shop philosophy and a well-organized shop method 

of its own. 

 The first engineering school, Rensselaer Polytechnic Institute, was not financially 

able in the beginning (1824) to support shops of its own. Therefore the founder di-

rected “that with the consent of the proprietors, a number of well-cultivated farms 

and workshops in the vicinity of the school be entered on the records of the school as 

places of scholastic exercises for the students, where the application of the sciences 

may be most conveniently taught.” The students were required in the first three r fur-

ther weeks of the first term (page 11) to “examine the operations of artists and manu-

facturers at the school workshops under the direction of a professor or assistant, who 

shall explain the scientific principles upon which such operations depend, four hours 

on each of six days in every week.” This plan is identical in principle with that now 

in use at the Sheffield Scientific School at Yale. There the students spend their whole 

time for three weeks before the opening of the second year in a well-organized course 

of this sort called “mechanical technology.” The boys do no actual manual work in 

shops. The purpose of the course as stated in the catalogue is: “to acquaint the student 

with the terms and processes in use in manufacturing and power plants, and to give 

him some personal contact with engineering work before taking up his studies in the 

classroom and the drafting room.” 

 It will be noted that this type of course gives the student opportunity for first hand 

observation, study, and discussion of the mechanical technique of production under 

real commercial conditions, but does not give him either manual skill and the “feel” 

of the machine that come only from actual use of tools, or acquaintance with the hab-

its and the outlook of workmen. Hence the benefits derived from this work are per-

haps more like those derived from inspection trips, the value of which is unques-

tioned. 

 A totally different solution of the shop problem is presented at the Worcester Poly-

technic Institute. At the founding of this school (1868) the Hon. Ichabod Washburn 

gave funds with which to establish a small manufacturing plant on the campus. In 

order to furnish a real shop atmosphere, twenty or more skilled journeymen are regu-

larly employed and articles of commercial value are manufactured and sold in the
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open market. The students work side by side with these journeymen, but are relieved 

by them of much of the drudgery that comes from the too frequent repetition of the 

same operation. The instruction is given by means of a series of graded exercises up-

on machine parts required for the business of the shop. 

 In his inaugural address as first president of Rose Polytechnic Institute in 1883 

President C. O. Thompson, who originally organized the shops at Worcester, tells us 

that this work was guided by the conviction that the more the students understand the 

nature and the difficulties of actual practice, and the more they use theoretical princi-

ples under conditions as like as possible to those of real practice, the greater are their 

chances of becoming competent and successful engineers. Mere contact with practi-

cal work, however, is not enough. For the best results the student’s work must be 

subjected to the inexorable tests of business, so that he feels responsibility in the use 

of valuable materials, and the stimulus that comes from knowing that he is making 

something that some one else wants but cannot make for himself. Without the con-

struction of articles whose workmanship is subjected to the objective test of salability 

in the open market, shopwork is liable to exalt the purely abstract aspect of mechani-

cal knowledge. 

 The shops at Worcester are still run as a manufacturing plant on a commercial ba-

sis. But in addition to the regular instruction in shop practice and the construction of 

articles for sale, much attention is now given there to modern methods of “scientific 

management.” The students analyze the cost of production into its elements, and de-

termine the relative values of different methods of construction to meet the limita-

tions of manufacture and the market price. The organization and operation of the 

manufacturing work of the shop furnish materials for the study of accounting, time 

cards, depreciation, inventories, overhead costs, purchasing, and selling. 

 The Worcester plan, it will be noted, seeks to coordinate the shop instruction with 

real conditions of industrial production in such a way that the students secure, in the 

least possible time, manual skill with tools, understanding of the principles of ma-

chine construction, and first-hand knowledge of manufacturing and commercial 

methods. The manufacturing shop is a working model for the study of the technique 

of business and of practice. The productive nature of the work and the objective test 

of its salability are two of its important characteristics that tend to make the experi-

ence significant to the students. 

 Among the schools visited, two others, the University of Illinois and Pennsylvania 

State College, regard the production of salable articles as an essential element of 

school shopwork. At the University of Illinois the shop has been recently organized 

as a manufacturing plant for the production of a two-cylinder gasoline engine. No 

effort is made to market the machine, yet no difficulty has been experienced in disposing 

of the entire output to the students and their friends. Manual skill is not made a special 

aim, and there is no series of graded exercises to teach the fundamental operations. 

The 300 or more operations required for the construction of the machine are all stand-
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ardized, and instruction sheets, like those regularly used in scientifically managed 

shops, are carefully followed by the students in all their work. All finished parts are 

tested and faulty ones rejected. 

 No paid journeymen are employed, but each section of the class is organized as a 

working unit, consisting of workmen, foremen, tool-room attendants, production 

manager, storekeeper, inspectors, etc. Each student is moved periodically from one 

type of work to another in such a way that when his three semesters of shopwork are 

completed he has performed all the essential functions of operating the plant. 

 Each student is graded according to his efficiency in production. Since every shop 

operation is standardized and has an experimentally set time limit, efficiency is de 

fined in terms of the actual time taken and the standard time. Grades are posted each 

week and, like all objectively determined grades, they stimulate great rivalry for maxi 

mum efficiency. The importance of careful planning and complete utilization of time 

is forcefully impressed, for the several sections are regarded as rival teams, and no 

student dares waste time in shop lest his team fall behind. 

 In this Illinois plan construction is still an integral part of instruction; but the omis-

sion of the journeyman mechanics shifts the emphasis from actual commercial pro-

duction, subject to the objective test of salability in the open market, to instruction 

about methods of commercial production. The shop becomes a “shop laboratory,” 

and the manipulations there partake of the nature of experiments designed to verify 

the principles of production that are operative in the industrial world, rather than to 

solve problems that arise in connection with their productive activities. As in most 

current laboratory work, the chief problem for the student is likely to be that of fol-

lowing directions intelligently, rather than that of finding the answers to questions 

that cannot be answered without making laboratory tests.1 

 The shopwork at the great majority of American technical schools is based upon a 

notion that is very different from those that have just been presented.  This notion has 

existed for many years, but it was given great prominence by President Runkle of the 

Massachusetts Institute of Technology in 1876.  President Runkle was so much im-

pressed by an exhibit of Russian shopwork at the Centennial Exposition in Phila-

delphia that he immediately addressed a special report on this subject to the Corpora-

tion of the Institute under date of July 19, 1876.  He explains that in the Russian sys-

tem all construction has been analyzed into a number of typical operations which 

may be arranged in groups, each of which involves the use of a distinct type of tool.  

The novice makes most rapid progress if he is first trained in the so-called “fun-

damental shop operations” without any idea of making any useful article.  Instruction 

in the use of tools is thus entirely separated from construction or production; so 

that only after the student has satisfactorily achieved skill in filing, turning, bor-

ing, forging, and the like, is he permitted to construct anything.  Since the tools
  

1 cf B.W. Benedict: Shop Instruction at the University of Illinois. Bulletin, Society for the Promotion of 

Enginee ing Education, vol. vi, pp. 234-257, December. 1915. 
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required for instruction in the fundamental operations are relatively simple, it is pos-

sible at reasonable expense to equip an “instruction shop” that will accommodate as 

many students as one teacher can instruct at the same time, thereby securing the 

greatest economy of both time and money. Besides, the more expensive construction 

shops are not essential at a school, since the young engineer, after graduating in such 

a course, will find no difficulty in completing his practical education in great manu-

facturing works. 

 President Runkle was very enthusiastic about this type of shop organization, calling 

it “a fundamental and complete solution of this most important problem of practical 

mechanism for engineers.” As a result, instruction shops were established at the Mas-

sachusetts Institute and are still being operated with great success as instruction shops 

pure and simple. The work is now so thoroughly well organized that about 300 hours 

of training suffices to give a young mechanic skill in the fundamental operations of 

his trade. The director of these shops, Mr. R. H. Smith, has published his instruction 

sheets in two excellent handbooks of shop practice. 

 The inference that President Runkle drew from his study of the Russian exhibit at 

the Centennial Exposition, namely, that the instruction shops might be totally sepa-

rated from the construction shops without loss of educational value for engineers, 

was very generally accepted as sound; so that the majority of college shops were and 

still are organized on that basis. Undoubtedly the fact that the instruction shops were 

less expensive to equip and maintain than the construction shops made this division 

even more attractive at a time when funds were scarce and the financial problem 

loomed large before the schools. Certain it is that in the great majority of schools 

there is no direct connection between shopwork and industrial production. 

 This type of shopwork met a real need when it was first introduced, forty years ago. 

At that time skill in machine tool work was often a real asset to a young engineer in 

securing his first job. Manufacturing shops were not so numerous nor so well orga-

nized as they are to-day. Under the present changed conditions, the question is now 

being seriously debated whether the shop courses in the engineering colleges ought to 

be altogether abolished. This question has been answered in the negative at the Uni-

versity of Illinois by the recent conversion of the shops into shop laboratories de-

signed to teach the principles of industrial production, as just described. On the other 

hand, the University of Cincinnati has answered it in the affirmative by the estab-

lishment of its well-known cooperative plan. 

 The Cincinnati plan was first formulated by Dean Herman Schneider in 1899, 

while he was an instructor in civil engineering at Lehigh University. In 1902 Dean 

Schneider presented a full statement of his scheme to the directors of several large indus-

trial firms which were considering the establishment at Pittsburgh of a new technical 

school to give an engineering training that would be better suited to industrial needs than 

that then given in the engineering colleges. This plan was abandoned when Mr. Carne-

gie founded the Carnegie Institute of Technology in the City of Pittsburgh. Finally,
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in 1906, Dean Schneider found an opportunity to make his experiment at the Univer-

sity of Cincinnati. 

 The mechanism of the scheme is very simple. The students are divided into two 

groups, one of which is assigned to work in industrial plants while the other goes to 

school. At the end of each bi-weekly period the two groups change places, so that the 

shops and the school are always full-manned. In the shops the students work as regu-

lar workmen for pay, but the nature of their work and the length of time each stays on 

any particular job are subject to approval by the university. The emphasis of the 

school work is on theory and principles, but these are well interrelated with the shop- 

work by “coordinators,” who visit each student during each shop period and then 

meet the several groups during the university periods in special “coordination” clas-

ses for this purpose. 

 The curriculum is completed in five years of 11 months each, so that each student 

receives 27 months of university instruction. Since the regular four-year curriculum 

in other schools requires about 36 months of actual instruction, it would seem at first 

glance that the Cincinnati curriculum could not give as full a training in fundamentals 

as is given elsewhere. This inference, however, is wholly unwarranted, because in the 

27 months of industrial work the student gets a vast amount of practical knowledge 

which is given in other schools in information courses, and because the close coordi-

nation with practice makes the theory more intelligible and significant to the students. 

The graduates of Cincinnati have unquestionably as extensive a training in theory as 

have those of other first class schools. In addition, the Cincinnati graduates are able 

to command engineering positions at graduation without one—or two—year “appren-

tice” courses, such as are required of men from other schools by a number of the 

large corporations. 

 About one hundred of the industrial firms of Cincinnati and the vicinity are now 

cooperating with the university in this work. These firms represent every important 

phase of engineering, so that the university is able to arrange the work schedules in 

such a way that each student progresses regularly thru every phase of his specialty, 

from the crude and rough work to the more difficult and responsible positions. For 

example, a civil engineer usually begins with pick and shovel as a member of a gang 

repairing track. If he elects railroad work, he will progress to switch and signal work, 

to bridge work, to general engineering work in the engineering department, and to 

evaluation work. He will learn how to run regular trains and work trains, how to 

place and operate the equipment for repairs or new construction, and how to calculate 

cuts and fills—all as part of the regular work on a “real railroad.” The employers, on 

the other hand, also benefit by the arrangement; they have found the labor of the “co-

op” students both reliable and profitable. 

 Financially the cooperative plan is very economical both for the university and 

for the students. The university has access with expense to shops and shop equip-

ment that are worth millions of dollars and are never allowed to deteriorate or be-
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come antiquated. Since only half the students are in school at any one time, the same 

school equipment is adequate for twice as many students as elsewhere. The result is 

that the total cost to the university per student per year at Cincinnati is about $1 At no 

other school of equal grade is this cost less than $250, and at the large endowed 

schools it runs as high as $600 or even more. The money earned by the student dur-

ing his shop periods, while not sufficient to pay all his expenses, is of great assis-

tance, and makes possible an engineering education to many a worthy boy who could 

not otherwise afford it. 

 In addition to the obvious financial advantage, the cooperative plan has many edu-

cational advantages. Not only is instruction combined with construction so that its 

social use is obvious to the students, but the construction has three marked points of 

superiority over that done in college shops. In the first place it is real commercial 

production that must succeed or fail on its merits. A shop atmosphere does not have 

to be artificially created. In the second place the variety of construction work is much 

greater than is possible in any college shop. The students’ experiences are not limited 

to those of making a gasolene engine or a drill press, but may include any of the ac-

tivities of one hundred different manufacturing plants. In the third place the student is 

thrown into close personal touch with workmen. He thus comes to know their point 

of view in a sympathetic way and secures a conception of the human problems of 

industry and of the appraisement of human values and costs that is invaluable to him 

and cannot be acquired so well in any other way. 

 Another striking educational advantage is secured by this method of conducting the 

shop instruction. Because it is obviously impossible for an industrial plant to permit 

its workmen to spend time giving instructions to green college boys, many have 

thought that the student must waste an enormous amount of time doing routine man-

ual labor. This loss is prevented by the “work observation sheets” that are given the 

student when he begins a new job. These sheets contain from fifty to two hundred 

questions concerning the details of the job, and direct him to sources of information 

where he can find the answers. He is required to be able to answer and discuss these 

questions during the “coordination periods.” In this way the manual labor is made the 

source of problems that are solved in the class-room and the laboratories. Shopwork 

thus becomes a series of exercises in defining and solving problems. Under these 

conditions it is much more likely to be intellectually fruitful than when it consists in 

carefully following the specifications of standardized direction sheets. 

 But if the Cincinnati plan has proved stimulating to the students, it has been revolu-

tionary for the faculty. Cooperation and business methods outside have compelled 

cooperation and business methods at home, with the results already discussed in 
Chapter V (page 30). Departmental autonomy has practically disappeared, the spirit of 

investigation has been liberated in the field of education, and it is probable that more ex-

periments in teaching are being made and objectively checked there than anywhere else. 
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 Dean Schneider’s experiment is clearly much more than a novel and inexpensive 

method of handling the shopwork. It is an effort to create a type of school that meets 

the demands of an industrial age. It frankly recognizes that the present need is for 

masters of materials who can humanize industry. It tries to emphasize rather than to 

discourage the appraisement of values and costs, and endeavors to express idealism 

in the mechanics of life rather than build ideals that are unrelated to human experience. 

 Because the educational conceptions on which the Cincinnati plan is founded are so 

different from the currently accepted conceptions of school practice, it has taken 

some time for other schools to recognize the significance of the venture. The scheme 

was scoffed at as unworthy of a real university and more likely to produce skilled 

“boiler makers” than professional engineers. The graduates are still too young to 

prove whether this criticism is to any extent valid or not. Meanwhile the cooperating 

firms in Cincinnati eagerly absorb all the product of the school, while other schools 

are introducing similar organizations. For several years the University of Pittsburgh 

has been cooperating on the same principle with a number of firms, the new munici-

pal university at Akron is organized as a cooperative school, and the Massachusetts 

Institute has just; completed arrangements whereby juniors and seniors in chemical 

and electrical engineering spend a number of months under school guidance in indus-

trial plants before graduation. A detailed account of the Cincinnati Cooperation Sys-

tem, written by Professor C. W. Park, has been published in Bulletin 37 for 1916 by 

the United States Bureau of Education. 

 With such rich opportunities for education lying plentifully about in every industri-

al plant, it is a striking anomaly that the schools make so little use of them. The situa-

tion is all the more impressive because the cooperative use of industrial plants results 

in a large reduction of the cost of schooling and gives the student the chance to sup-

port himself partially in college. The neglect of the possibilities of shopwork is re-

sponsible in large measure for the professional criticism that the graduates cannot 

apply theory to practice, for the establishment by large corporations of apprentice 

schools in which engineering graduates may complete their training on the practical 

side, for the preference shown by many firms for shop-trained rather than college- 

trained men, and for the insignificant percentage of production managers who are 

college graduates. 

 On the other hand, the neglect of shopwork is not the result of carelessness or of 

chance. It is due to a consistent effort to meet the professional demand that emphasis 

in school be placed on the fundamentals of engineering science. But while practising 

engineers are unanimous in this demand, they recognize that something is wrong with 

the present system. The fundamentals that are presented in college do not seem to be 

mastered in such a way that they function readily in practice. Yet common sense in-

stinctively feels that there is no essential contradiction in the practitioner’s position, 

but that it is possible for colleges to teach the principles of science and develop a sci-

entific attitude of mind in such a way that both are readily transferable to practice.
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The University of Cincinnati endeavors to do this by using the practical problems of 

the shop as the basis of the theoretical work in the school. But the established engi-

neering schools hesitate to approve this solution. In spite of the fact that their real aim 

is to develop men for intelligent production, they fear too close an intimacy with in-

dustry. They shrink from offering short courses and extension work in mechanic arts, 

like those which have done so much to advance agricultural production, because this 

type of instruction does not seem to be “of university grade.” This fear is justified so 

long as shop practice is limited to training in the so-called “fundamental shop opera-

tions” wholly divorced in “instruction shops” from production and contact with 

workmen. But when the students are systematically guided, as they are in Cincinnati, 

by work observation sheets and coordination classes, the shopwork not only develops 

mechanical skill and imparts practical information concerning shop practices, but it 

also serves as a source of problems and projects for theoretical analysis and solution 

in the university classes in physics, in chemistry, in mathematics, in mechanics, in 

economics, in sociology, and even in ethics. The problems thus defined are not the 

stock type of book problems that were made up to illustrate theories already demon-

strated in class; they are the real engineering problems of production that constitute 

the warp and woof of the engineer’s life. On this basis shopwork is perhaps the most 

effective type of professional training, since it is a direct application of the adage — 

Learn to do by doing. 

 Recently Dean Schneider has been able to express this fundamental educational 

conception of the cooperative system in a manner that is easily comprehensible to 

university men. Several of the industrial firms cooperating with the university are 

supporting industrial research laboratories for the purpose of increasing production. 

These laboratories are treated by the university exactly like every other section of an 

industrial plant; so that upper classmen, who have shown ability in investigation by 

the way in which they have discovered and defined problems in industry during their 

earlier years of shop experience, are assigned here as assistants on research problems 

for their regular bi-weekly industrial tasks. 

 During the past decade a number of large industrial companies have established in 

their plants research laboratories manned by eminent scientists of pronounced re-

search ability. These laboratories are supported by the industries, and are excel lent 

investments, because the increase in the efficiency of production resulting from their 

labors saves each year more than the cost of their maintenance. Now that in creased 

production has become a national necessity, a large amount of attention is being giv-

en to the question of the relation between the universities and the industries in the 

matter of research. Up to the present the Mellon Institute at the University of 

Pittsburgh is the only instance of cooperation between a university and the indus-

tries in the maintenance and operation of a strictly research institution. The suc-

cess of this experiment, originally devised and inaugurated by the late Robert 

Kennedy Duncan at the University of Kansas, has been so gratifying to the univer-
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sity in bringing its professors in contact with industrial life, and to the industries in 

reduced costs of production, that other similar institutes will undoubtedly soon be 

established under the pressure of the present great national need. Industrial shops are 

literally bursting with problems that call for scientific investigation of the highest 

order; factories are filled with masses of observation and of empirical data whose 

coordination and theoretical analysis would be of the utmost value to production if 

scientists competent to accomplish the task could be found. Millions of dollars are 

annually wasted in the United States by the duplication and repetition of investiga-

tions and experiments in several different plants because there is no pooling of prob-

lems or of scientific interests and no central bureau of information, record, and re-

search to which all could look for scientific enlightenment. The missing link is a 

technique for coordinating learning and labor so that each may serve the other to the 

fullest in increasing the intelligence and the economy of production as the basis of 

mutual strength. The experiments with cooperative shopwork at Cincinnati and with 

industrial research at the Mellon Institute at Pittsburgh are rapidly developing such a 

technique. The engineering colleges are beginning to grasp the real educational sig-

nificance of cooperative shopwork, and industrial research laboratories at universities 

will surely be forthcoming as soon as the conception of their national scientific and 

industrial importance is clearly defined. Some combination of the two will un-

doubtedly supply the ultimate solution of the problem of shopwork in engineering 

education. 
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CHAPTER XIII 

THE CURRICULUM 

IN the preceding five chapters the larger problems of engineering education are dis-

cussed and a number of suggestions are offered concerning methods of investigation 

that promise progress toward effective solutions. It remains to indicate how the vari-

ous conceptions presented may be integrated in a consistent and workable curriculum. 

 The question of admission requirements is treated with sufficient detail in Chapter 

VIII. If a group of schools will take up the careful study of their entrance systems and 

make experiments with objective tests and records of the students’ youthful interests 

and achievements, it is certain that the percentage of elimination can be reduced to at 

least a fourth of its present size, with an enormous saving of time, energy, and money 

for both student and school. The effect on secondary education would also be most 

salutary, in that objective entrance tests that measure ability require a shifting of the 

emphasis in high school from learning facts to developing ability, and tend to liberate 

teachers from the bondage of detailed syllabi and cramming methods. In order to ac-

complish these ends it is necessary to expand the recorder’s office into a bureau of 

investigation, and to equip it with a competent personnel for this work; for at present 

most college record offices are overburdened with routine work and so cannot under-

take this experiment without both expert guidance and additional clerical help. It is 

more than probable that the expense thus added will prove a real economy, because 

intelligent selection of students at entrance is bound to reduce the waste that comes 

from trying to teach engineering to boys who have no real engineering interest or ability. 

 The reorganization of the college curricula to accord with the suggestions in the 

preceding chapters requires several radical changes from current practice. In the first 

place the number of required credit hours per week should be less than eighteen — 

preferably sixteen. This recommendation is not intended to decrease the number of 

hours of work done per week by the students, but to make it possible for them to do 

all of their work more thoroughly. It is, of course, obvious that such a reduction of 

required credit hours cannot be satisfactorily made without extensive changes in the 

content of the courses, for it would be disastrous to leave the distribution of time 

among the departments as it is and merely try to organize them on a sixteen-hour- a-

week basis instead of on a twenty or twenty-four hour basis. 

 In the second place, the few experiments that have been made on the subject indi-

cate that college students do their best work when the number of different subjects 

studied at a given time is not greater than five. In constructing a curriculum it is de-

sirable, therefore, to limit the number of simultaneous courses to four or five at the 

outside. At Rensselaer they are limited to three, but the advantages of this are to a 

certain extent offset by frequent changes in the three (page p25). 
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 A third essential requirement of all engineering curricula is adequate provision in 

the first two years for “orientation,” contact with real engineering projects, and prac-

tical experiences that make the boy feel that he has actually left high school and en-

tered upon a professional career. Orientation lectures to freshmen meet this require-

ment to a certain extent; practical work in surveying parallel with trigonometry dur-

ing the first term of freshman year is perhaps more effective for this purpose; a 

course in mechanics, such as is now given to freshmen at the University of Washing 

ton (page 58), is excellent; but the cooperative system at Cincinnati (page 78) is the 

most complete and thoroughgoing solution of this problem yet presented. 

 Practical engineering work is essential for the freshman not only because it appeals 

to his professional ambition, arouses his enthusiasm, and gives him training in prac-

tice, but also because it helps him to master the theoretical work more fully and more 

quickly. Every one knows that at present the engineering professors are seriously 

handicapped in their work with juniors and seniors because the students are notori-

ously unable to make professional use of the principles of physics, of mathematics, 

and of mechanics with assurance and accuracy. One of the most common complaints 

of employers is that even college graduates have serious difficulty in applying theory 

to practice. As has been pointed out (page 80), this weakness may be overcome by 

suitable coordination of theory and practice during the learning process. Hence to the 

three other requirements of effective curricula must be added this interrelation be-

tween the concrete and the abstract throughout the entire college course. 

 Besides the four requirements that have been mentioned there are a number of per-

tinent suggestions that demand attention in framing curricula. Thus there is a wide-

spread agreement among professional engineers that the college curriculum should 

aim to give a broad and sound training in engineering science, rather than a highly 

specialized training in some one narrow line; that considerable attention should be 

paid to humanistic studies like English, economics, sociology, and history, not mere-

ly because of their practical value to the engineer, but also because of their broad 

human values; and that the young graduate should have some conception of business 

management and of the most intelligent methods of organizing and controlling men. 

 It is well-nigh impossible to construct curricula that will meet all of these require-

ments and suggestions without giving careful consideration to many of the recent 

investigations of experimental psychology and to the rapidly increasing literature of 

the new science of education. Every professor who takes a responsible share of this 

work will find much to help him in the books listed iii the Selected Bibliography on 

page 1 for until college faculties appreciate the necessity for experiments in teaching 

and grasp the significance of the results already obtained, progress is likely to be 

slow. Therefore the first step for any school desiring to reorganize its curricula is the 

appointment of a small standing committee composed of men who are interested in 

the problem of better teaching and able and willing to give considerable time to     
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the work. This committee will need ample facilities in the way of clerical help, and 

effective service on it will soon be recognized by everybody as one of the surest and 

most expeditious ways of winning academic advancement. Unless a school is pre-

pared to place this study of education on a basis of unquestioned respectability, it is 

just as well to continue the present methods of constructing curricula by debates on 

the time schedule and of measuring educational progress in terms of hours plus a 

passing grade. 

 When a suitable committee on instruction has been appointed and given adequate 

support, its first big problem is that of the relations of the school with the industries. 

Here the solutions are bound to be varied because, tho there is general agreement that 

some actual experience in practical work is an essential part of the training of every 

engineer, the environments of the schools are so different that no single type of ar-

rangement is likely to prove most effective for all. Even in industrial centres like 

Cincinnati, Pittsburgh, and Boston, quite different schedules for handling cooperative 

shopwork are in use; and still others may be found that are more effective for institu-

tions in rural communities, like Cornell, the University of Illinois, or the University 

of Colorado. The important point is that in some way adequate provision be made for 

personal participation in industrial work, for supervision of that work by the school, 

and for stimulating the student to be ever on the watch for practical questions and 

problems which may be brought back to the school for discussion, theoretical analy-

sis, and solution. Professor Thorndike found from his study of engineering college 

freshmen that 95 per cent of them do engage in productive labor; so the problem is to 

make the time so spent fruitful by some form of supervision that may prevent their 

wasting their energies as ushers in theatres or bell boys in hotels for the sake of sup-

porting themselves in college. 

 Having selected the type of cooperative industrial work that seems best suited to 

the peculiarities of the environment of each particular school, the committee on in-

struction may proceed to formulate a curriculum for the school work itself. In this it 

is conceivable that the schools will reach conclusions that are more similar to one 

another than, is probable with the cooperative industrial work; for if it is agreed that 

the chief function of school work is to give the greatest possible mastery of the essen-

tial principles of engineering science, then there is a common foundation on which all 

curricula must be built. The first step, therefore, in framing a course of study is to 

define this common basis of all engineering as clearly as possible; that is, to make a 

list of all the facts, principles, and processes that are essential elements in the equip-

ment of every engineer. Theoretically this is the plan on which present curricula are 

founded, for they all have a common core made up of three distinct parts, namely, 

science (mathematics, chemistry, physics, and mechanics), mechanic arts (drawing 

and shop), and humanities (English and foreign languages). All of this common core 

is usually explicitly required of every student, no matter what specialty he may 

choose. 

 In addition to this explicitly recognized core of common material it is customary
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at present to require civil engineers, for example, to take brief courses in mechanical 

and electrical engineering, since it is necessary that a road or a railroad builder know 

something of steam machinery, turbines, electric machinery, and gas engines. Con-

versely, the modern electrical engineer must know something about steam engineer-

ing, girders, trusses, factory construction, and even tunneling; and the sanitary engi-

neer finds it necessary to understand at least the elements of hydraulics and the 

mechanism of pumps and pumping machinery. This instruction in one specialized 

branch of engineering for students who are specializing in another is now generally 

supplied by technical courses in the third or fourth years, sometimes by combination 

courses required of all students, and sometimes by special short courses in one 

branch for students in the others. Evidently there is a large amount of material which 

is now presented in technical courses after specialization has begun, but which is re-

ally essential to every engineer, and therefore might well be explicitly recognized in 

the core of common material. 

 Without regard to the question as to whether the subject-matter of this common 

core is well or poorly chosen and irrespective of the success with which the work is 

given, there is a fundamental difficulty in the current organization of the common 

core of all engineering; namely, the fact that it recognizes no inherent or intrinsic re-

lationships among the three categories under which the classification is made. The 

sciences are usually treated as sciences pure and simple without regard to their func-

tion in engineering (page 39); in the mechanic arts the instruction shops are as a rule 

purposely separated from the construction shops (page 78); and the humanities gen-

erally strive consciously and vigorously to get away from engineering in order that 

the student may get at least a glimpse into the mysteries of language and of literature 

and a touch of culture. As a result of this lack of inherent connection, many schools 

have already dropped the requirement of foreign languages, because some faculties 

recognize that French and German when taught as they are for purposes of drill in 

grammar have no vital connection with engineering. Similarly some schools are seri-

ously considering giving up the shopwork, since it is not at clear why skill in the 

handling of tools is essential to every engineer. There has even been some talk of 

ceasing to require calculus of every student, because there is very little obvious con-

nection between some forms of calculus and engineering. Thus before a more effec-

tive common core for all engineering curricula can be constructed, it is necessary to 

adopt a classification of the subject-matter that obviously expresses the intrinsic rela-

tion ships of the several component parts to the needs of every engineer. 

 The categories for a new classification of this kind may be deduced from the fun-

damental aim of engineering. As has been frequently pointed out (pages 3 the real 

purpose for which engineering schools were established is to increase industrial pro-

duction, because the ultimate aim of engineering is more intelligent production. But 

every production project requires the coordination and adjustment of three factors, 

namely, scientific theory, mechanical practice, and cost. A theoretically perfect ma-
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chine that cannot be built is no more useless than one that costs so much that no one 

is willing to buy it. Success in engineering comes to him who most often judges 

soundly concerning the best adjustment of these three complex factors. Therefore 

engineering education is likely to be more effective in proportion as it fosters the de-

velopment of skill in determining the most expedient adjustments among theory and 

practice and cost. 

 It is customary in designing curricula to keep these three essential phases of engi-

neering distinct from one another and to teach them as independent units, leaving 

their synthesis into well-organized mental processes to the student’s own efforts. This 

practice is so widespread that its validity is naïvely accepted as a matter of course, 

and few seem to suspect that it may be connected in any way with the year or two of 

floundering thru which most graduates pass after leaving college and before finding 

themselves. Universal experience, on the other hand, seems to indicate that the most 

effective method of learning is by doing; so that if engineering depends ultimately on 

power to interrelate theory and practice and costs, a training that re quires the student 

frequently to interrelate these three fundamental factors is likely to yield a better 

product than is secured from a training that largely ignores their interdependence. A 

curriculum that recognizes the intrinsic relationships involved is not difficult to con-

struct after the fundamental common elements of all engineering have been selected; 

but until these elements have been chosen, it is impossible to give more than a gen-

eral outline or skeleton, on which any school may easily construct a program by fill-

ing in with subject-matter appropriate to its environment and its educational aim. 

 A curriculum that satisfies all of the requirement mentioned above would include at 

least four types of work. In the first place there must be actual participation in real 

industrial work, either during summer vacations or better thru some form of continu-

ous cooperation with industries. This industrial experience must be supervised by the 

school and used as a source of problems and projects for scientific analysis and study 

in laboratory and class-room. It should begin at the beginning of the freshman year 

and continue at least until the work common to all branches of engineering is com-

pleted. In the later years it may well take the form of cooperative work with an indus-

trial research laboratory (page 82). It is not necessary or desirable that all students do 

the same type of thing, provided class meetings are held for the discussion and ex-

change of experiences. 

 In the second place there should be engineering laboratory work, including drawing 

and descriptive geometry; and this, too, should continue throughout the common por-

tion of the course. Here the student would make the measurements and carry out the 

operations needed to enable him to solve the problems and projects that originate ei-

ther in his industrial or in his class work. These problems and projects should be as 

far as possible framed in such a way that the desired solution cannot be secured with-

out making the experiment; they should not consist of mere verification of known
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results or of repetition of standardized manipulations. Elementary surveying is a 

fruitful source of problems of the right kind; the energy transformations and efficien-

cies of different sorts of machines, prime movers, and motors require endless investi-

gation, much of which is simple enough for freshmen yet rich in engineering content. 

Questions concerning the kind of material to select under given conditions of stress, 

wear, and cost are also excellent. Attention has already been called to similar prob-

lems now in use in mechanics (page 58) and in chemistry (page 61). All of this mate-

rial should require the constant use of the fundamental principles that every engineer 

must know, and frequent problems involving the computation of relative costs under 

various conditions should be discussed and solved. 

 The third type of work essential to the new curriculum is mathematics and science, 

which should be developed systematically in logical order so as to furnish the back-

bone of the course. The determination of the sequence of topics for the laboratory 

projects and for the classes in mathematics and science offers an opportunity for in-

vestigations of the highest order, because it is obviously desirable that theory and 

experiment be closely interrelated, and this requires agreement as to what are the 

fundamental conceptions of mathematics, mechanics, and physics. The Society for 

the Promotion of Engineering Education has made an admirable beginning of such 

investigations thru its committees on teaching mathematics and on teaching mechan-

ics; but the reports of these committees have not yet been generally accepted, and the 

laboratory side of the problem has not yet received serious attention. 

 The humanistic studies make up the fourth type of work essential to the training of 

every engineer. The professional criticisms of the schools indicate that this field of-

fers the greatest opportunity for effective changes in current practice, because lack of 

good English, of business sense, and of understanding of men are most frequently 

mentioned by practising engineers as points of weakness in the graduates of the 

schools The criticisms point out two types of weakness, namely, lack of technical 

facility in expression, in business, and in handling men; and lack of appreciation of 

and interest in literature, economics, and social philosophy. Clearly the humanistic 

departments are not alone responsible for these weaknesses, for no amount of drill in 

the technique of language will make a student write and speak clearly if he does not 

think clearly; and training in clear thinking is as much the function of the teachers of 

science, mathematics, and engineering as it is the function of the teachers of English. 

And if the professors in the technical subjects rigidly exclude from their instruction 

all discussion of human values and costs, is it reasonable to expect the students to 

appreciate economics and social science? As every one is aware, languages, econom-

ics, and social sciences are generally treated as “extras” in curricula, and are as gen-

erally regarded as superfluous “chores” by the students. 

 The difficulty in present school practice evidently lies in the exclusion from the 

technical work of all consideration of the questions of human values and costs; and, 

conversely, the isolation of the humanistic studies from all - technical interest. The
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theory has been that engineering at best is tied to materials; but that it can be made 

less materialistic by ignoring the question of dollars and cents in the technical work, 

and by teaching science, mathematics, economics, and literature for their own sakes 

entirely isolated from inherent technical relationships. This conception, however, is 

gradually giving way, for the experiments described in the last four chapters indicate 

that technical work is more impelling, and is, therefore, more fully mastered, when it 

includes the consideration of values and costs; while humanistic work becomes sig-

nificant, and therefore educative, when it starts from and builds upon the professional 

interest. And after all, the ultimate control of all engineering projects, as of all activi-

ties, is vested in some man’s decision that the game is really worth while; and this 

control is likely to be more salutary, the more completely the man who decides com-

prehends the full import of the values and costs involved. 

 A good example of one method of treating the study of English so as to develop 

skill in expression, appreciation of literature, and a philosophy of values and costs 

may be found in Professor Aydelotte’s experiment with-freshmen and juniors at the 

Massachusetts Institute (page 63). If work of this kind were continued thru several 

years, it might readily be made to include some study of all the political, economic, 

and social problems which every engineer is compelled to meet. The experiment of 

organizing a series of projects and problems in these subjects for class discussion, out 

side reading, and report, into a consecutive course that would give young engineers 

some conception of the present social situation and of the engineer’s relation to it, is 

well worth trying. It may be that such a course, by developing in students an intelli-

gent understanding of the meaning of engineering in modern life, would be a power-

ful factor in defining the status of the engineer and in liberating his creative energies 

for still larger service. 

 The best time schedule for a curriculum built along the lines suggested cannot be 

determined in advance. It is therefore necessary at first to make an arbitrary distribu-

tion of the 15 credit hours available and then make adjustments as experience may 

dictate. Two schools, Brown University and the University of Washington, are trying 

a new curriculum of this kind this year. At Brown the time of the freshman year is 

divided in this way: mathematics 4, drawing and descriptive geometry 3, engineering 

mechanics 3, English 3, and chemistry 3. If military science is required, it might be 

well to reduce the time for mathematics from 4 to S in order to make place for it. 

 It is also impossible to decide without experiment how many years will be required 

to give this training in the essential common elements of all engineering. After the 

essential topics have been selected, as much time as is required to teach them thor-

oughly should be taken for this purpose. Two years maybe enough, but if this is 

found to be inadequate, more should be assigned to this fundamental portion of the 

work. The important thing is that the essential elements be first selected and then that 

time enough to master them be given, instead of the current practice of assigning the 

time and then “covering” as much as is possible within the set limits. No time schedule
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of the proposed curriculum is offered here, lest schools be tempted merely to fit pre-

sent courses into the suggested schedule without first making the thorough analysis 

of the problem here demanded. Such a simple rearrangement of the old bricks in a 

new pattern will not be likely to accomplish the required results. 

 No provision is made for foreign languages in the curriculum just suggested. They 

have been omitted because three-quarters of the 1500 practising engineers who re-

plied in writing to a question on this subject agreed that they had never found foreign 

languages essential to their professional careers, and half of them thought that they 

should not be required. In addition, there is a growing conviction among the schools 

that for students of engineering the time now spent in college on foreign languages 

may be much more profitably spent in other ways. If it appears that the foreign ex-

pansion of the national outlook necessitates facility in one or more foreign languages, 

every effort should be made to ensure the acquisition of that facility be fore entering 

college. At West Point the cadets acquire all the control an engineer needs over 

French in 200 hours of intensive training; and the technically minded student is far 

more likely to become broad-minded and cultured thru studies of literature and social 

conditions in the manner just described than he is thru the type of linguistic drill that 

is now universally given under the name of foreign languages in high schools and 

colleges. 

 The organization of curricula here proposed is very different from that in general 

use. Therefore it would not be wise to attempt to produce a curriculum of this kind by 

merely substituting, say, engineering laboratory for foreign languages and the new 

type of English for the old, without in any way changing the content or the methods 

of instruction of the other courses. The new plan is based on the proposition that it is 

possible to analyze engineering practice and to make a list of all principles, facts, and 

theories that are essential to the equipment of every engineer, and then to organize 

this subject-matter into a curriculum in which the several types of work are interrelat-

ed in such a way that their inherent relations are obvious to the learner. Such a cur-

riculum satisfies the professional demand for broad and fundamental training for all 

engineers and renders superfluous the requirement of two or three years of pre-

engineering work in a college of liberal arts. It does not prepare specialists, and hence 

specialization is the topic of the next chapter. 
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CHAPTER XIV 

SPECIALIZATION 

THE preceding chapter suggests methods that may be profitably employed in framing 

a well-coordinated curriculum designed to give all students of technology a broad 

and solid foundation in engineering science and practice, thru personal con tact with 

industrial work, experience in solving practical problems in the engineering laborato-

ries, systematic instruction in mathematics and science, and thoughtful consideration 

of the significance of human values and costs. The criterion by which to determine 

what subject-matter may be included and what excluded is that of common necessity; 

so that all those principles, processes, facts, and theories which are approved by a 

board of expert judges as essential to the equipment of every engineer are included, 

and all others are excluded. The course of study thus organized will be called the 

common core of the curriculum. How may provision best be made for specialization 

when a student has satisfactorily mastered this common core? 

 Evidently the first step toward successful specialization is intelligent sorting of the 

students, so that each is led as definitely as possible into that type of work for which 

he is best fitted temperamentally. This requires that while the students are working 

thru the common core of studies every effort be made to discover the particular abili-

ties and specific bent of each, not only by means of ordinary examinations and aca-

demic grades, but also thru objective tests of graded difficulty (page 50), personality 

estimates by members of the faculty (page 73), consideration of boyhood interests 

(page 53), and observations of each student’s reactions to the different portions of the 

common core. In other words, the work of the common core offers an excellent 

chance for vocational guidance; so that the student would not choose but rather be 

claimed by the special field for which he is best fitted. Probably nothing would con 

tribute more to the success of the later specialized work than a systematic utilization 

of this opportunity. A number of schools are ostensibly doing this now, but none has 

yet achieved the degree of success that is easily attainable by intelligent experiment 

with the various methods now in use in many places. 

 By the methods provided for sorting the students during the first two or three years 

of their courses it should be possible when they finish the common core of the engi-

neering curriculum to divide them into five or six groups, each of which contains all 

who have special qualifications for one of the major lines of professional work. For 

each such group a curriculum must be framed on the same plan as that used for the 

common core. Thus for the civil engineering group a competent committee would 

first select all the elements essential to all civil engineers but not already included in 

the common core, and these essential civil engineering elements would be organized 

into a consistent curriculum composed of the same four types of work required

  



 323 

96       STUDY OF ENGINEERING EDUCATION 

for the common core. A similar selection of subject-matter has to be made for the 

mechanical engineering group, for the electrical engineering group, and for each of 

the other major groups which the school desires to develop. 

 As with the common core, so here, the amount of time needed to master the materi-

als selected as essential in each group has to be determined by experiment. It may 

well happen that more time is required for electrical engineers than for civil or min-

ing engineers, but this is no real objection; the conception that four years of study 

makes any kind of an engineer is a habit rather than a rational conclusion. If the sub-

ject-matter chosen can all be shown to be really essential, and if the instruction is in-

tensive, then the school may well insist on time enough to do its work thoroughly. 

This does not mean necessarily that more than four years will be required for thor-

ough going training, for the present congestion of curricula is in large measure due 

both to the presence of subject-matter which cannot be justified on the ground that it 

is essential, and to the teacher’s habit of underestimating the student’s actual ability 

and capacity for significant work. 

 The number of these semi-specialized groups at any one school may well depend 

on the location and the capacity of the school. The great majority of institutions will 

probably have one for each of the commonly accepted branches, as civil, mechanical, 

electrical, and chemical engineering. The mining group has already been somewhat 

separated from the others by the establishment in mining districts of state schools of 

mines, so that a number of strong schools elsewhere no longer offer courses in min-

ing engineering. While it is clear that every technical college should offer the com-

mon core, it is an open question how many of the semi-specialized groups each 

should attempt to supply. It is conceivable that some schools might do much more 

thorough work if they followed the example of Stevens Institute and specialized on 

one or two groups. It may even happen that a number of the smaller schools will find 

it to their advantage to give only the common core and send their students for special-

ization to the stronger schools. It may also be best for many of the students to leave 

school when they have completed this general work, especially if leaving should be 

dignified by the award of a suitable certificate or diploma. 

 On the other hand, there is an urgent need that a number of the schools add to these 

semi-specialized groups one in production engineering or engineering administration, 

as it is called at Pennsylvania State College and the Massachusetts Institute of Tech-

nology. The seriousness of this need has been emphasized by war conditions, which 

have demonstrated how essential it is to apply engineering methods to account-

ing, to the management of men, and to the organization of business, if maximum 

production is to be attained. Until recently most schools have specialized in de-

sign, with the result that at present fully ninety-five per cent of the production 

managers in manufacturing plants are not college but shop-trained men. The oppor-

tunity for the college-trained engineer is now very much larger in the field of pro-

duction and administration than it is in the field of design, so that the most striking
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development of the engineering schools in the next twenty years will probably be 

made in the direction of the former. 

 Throughout the period of semi-specialization it is desirable to continue all of the 

four types of instruction comprised in the common core, but the technical work of the 

several groups may be very different, each along the line of the group specialty. In 

the humanistic work, however, the subject-matter presented may well be the same for 

all, because the engineering attitude which these studies foster is the same for all. By 

this means it is possible to develop among the engineering students a unity of pur-

pose and outlook which will be a great asset in developing a professional conscious-

ness among engineers, because it tends to establish engineering standards by which to 

interpret and attack the industrial and social problems of the day. 

 The systems of grading and personality analysis used during the early portion of 

the course should also be retained, in order that the semi-specialized work may fur-

nish the basis for more accurate guidance of each student into the particular line of 

work for which he is best fitted. 

 When the student has completed the semi-specialized work he should be well 

grounded in the fundamental principles of engineering science and in the theory and 

practice peculiar to some one of the major branches of the profession. If during this 

training he has shown particular ability in some specific line of work, opportunity 

should be given him to pursue his specialty in elective courses of highly technical 

con tent. These courses, however, should not consist, as many of the senior electives 

do now, of detailed study of the technique of such subjects as heating and ventilating, 

telephone wiring, roads and pavements, sewage disposal, and the like. If the student 

has been trained as he should be in methods of attacking problems and gathering in-

formation, he will probably make better progress in this kind of work in the industries 

than he will in school. Since these courses are for specialists who have elected them 

after a long process of vocational selection, they should deal with the more abstract 

and general phases of each subject. For the industrial phase of it, current problems in 

industrial research with practice as assistant on some of them are appropriate; for la-

boratory practice, expert testing and trouble hunting might serve well; on the scien-

tific side, thermodynamics, the ionic theory, differential equations, functions of a 

complex variable, wave motion, spherical harmonics, electromagnetic theory, and all 

types of design, might be given for those whose bent and abilities warrant. 

 The plan of curriculum here proposed may seem to many very similar to the one on 

which curricula are at present constructed. In a general way this is true, since both the 

present plan and the one proposed agree in requiring all engineers to take the same 

training at the beginning and in gradually separating them into specialized groups 

later. The two schemes, however, differ radically in a number of important ways. In 

the first place, current curricula are made by first setting the time limits for each 

of the several subjects involved and then allowing each department to use its time 

allotment as it may see fit (page 56). The new plan suggests that the faculty first
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select the subject-matter that is essential to the equipment of every engineer and then 

ask the several departments to determine experimentally how much time is needed 

for their respective parts. The former is a centrifugal system, which magnifies depart 

mental differences, causes confusion as to the aims of the instruction, and wastes an 

immense amount of time; the latter is centripetal, in that it operates to bring about 

mutual understanding and hence definiteness of aim and economy of time. 

 Again, the proposed plan calls for the student’s participation in real industrial work 

and the utilization of his experiences there as a source of problems for theoretical 

analysis and solution in the class-rooms. This is suggested as a substitute for most of 

the current shop practice, such elements as should be retained in school being includ-

ed in the engineering laboratory work. 

 In the third place, the suggestion is made that engineering laboratory work be re-

quired throughout the first two or three years. At present such work is given almost 

entirely in the last two years, because teachers generally believe that the students are 

incapable of working intelligently at practical engineering projects until they have 

been well drilled in theoretical principles and mathematical processes, in spite of the 

astonishing manner in which boys of high school age learn without assistance to man 

age wireless telegraphy or gas engines. The proposed arrangement makes it possible 

for the faculty to assign tasks that tax the boy’s capacity and challenge his ingenuity 

and his natural instinct for mechanism. Such tasks are almost sure to be effective 

means of releasing creative energy and of directing it so that it brings the greatest 

educational returns. Besides, under these conditions a student finds himself constant-

ly in need of the principles and methods developed in the classes in mathematics and 

the sciences. In this way these subjects may be made significant to boys with an en-

gineering bent; and, as is well known, the probability of learning thoroughly increas-

es with the significance of the lesson. The fact that a boy elects engineering indicates 

that his mind is probably of the type that thinks most clearly in terms of specific ob-

jects, and that grasps general principles most firmly when it has built these up by the 

synthesis of a number of specific concrete cases. in combination with the cooperative 

industrial work this engineering laboratory work furnishes also a rational foundation 

for the proposed industrial research of the later years (page 82). 

 In the fourth place, the suggested organization requires a close coordination be-

tween the scientific courses of the common core and the practical work. At present 

mathematics and the fundamental sciences are usually taught for their own sake, with 

independent laboratories and little attention to technical applications. Under the ar-

rangement proposed the essential portions of the laboratory work in elementary phys-

ics, for example, would be absorbed and taught in the engineering laboratory. The 

elementary class work in physics would then be limited to the study of those funda-

mental conceptions and principles of physics that are embodied in all engineering 

work; while the more elaborate and recondite portions of the subject would be re-

served for elective courses in the later years, where they would be better appreciated
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by students qualified to grasp their significance. The same suggestion applies to 

chemistry and especially to mathematics, in which much that is ordinarily imposed 

on unwilling sophomores would be eagerly grasped by selected seniors. 

 A fifth departure from current school practice is made in the recommendation to 

emphasize the problems of values and costs. This topic has obtained scant recogni-

tion in higher education for fear of contaminating university ideals with those of the 

marketplace. Such a fear is justified when the discussion is limited to monetary val-

ues and costs. But when the subject is treated in some such manner as Professor J. A. 

Hobson treats it in his Work and Wealth, A Human Valuation1, it may be made the 

most potent means of expressing the highest type of university spirit. Hence in urging 

ex tended consideration of this subject it is taken for granted that the discussions will 

not be limited to questions of dollars and cents. The control of engineering lies in the 

hands of those who judge most accurately what enterprises men value sufficiently to 

be willing to assume the cost. Because engineering education has confined itself 

largely to technological training, engineers are seldom placed on state highway 

commissions and other public boards that must decide how public funds shall be ex-

pended on engineering enterprises. Too frequently the engineer is employed to do the 

technical work of construction only after a board composed of doctors, lawyers, cler-

gymen, bankers, merchants, or politicians has made an appraisement of values and 

costs and decided which project shall go forward and which not. The conception is 

rapidly developing that the public interest might be better served if the engineer had 

more voice in making such decisions, and to win greater influence in this direction he 

must be trained to appraise correctly what men consider to be most worth while. 

 Because the appraisement of values and costs is the controlling factor in engineer-

ing, the final important change from current school practice that is suggested deals 

with the humanistic studies. The usual method of treating these subjects in short in 

dependent courses in the technique of composition, literature, history, economics, 

and so on, seems less likely than the method proposed (page 92) to develop the de-

sired insight into these profound problems of value and cost. The experiments at 

Wisconsin and the Massachusetts Institute have progressed far enough to show how 

successful this type of work is with freshmen in developing powers of both forceful 

expression and appreciation of good literature. Therefore it seems reasonable to ex-

pect that the extension of this work into a consecutive course extending thru the en-

tire curriculum and consisting of live discussions and extensive study of the best that 

has been thought and said concerning the immediate and the ultimate values in life, 

offers the most promising solution of the problem of culture for engineers. 

 The organization of curricula suggested in the foregoing chapters does not solve the 

problem of engineering education. It does, however, create conditions that are more 

favorable than those now prevailing for progress toward the desired solutions of a 

number of the major questions. Thus objective tests for admission will undoubtedly

  
1Macmillan, 1916. 
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enable the schools to reduce elimination by permitting only those who have some 

demonstrable degree of engineering ability to enter, but much time and many exper-

iments will be required before this end is accomplished. Similarly the engineering 

work in the common core, when measured by a suitable system of testing and grad-

ing, makes the experiences of the first two or three years both valuable to technical 

men of all grades and a further means of sorting the students according to their vary-

ing degrees of engineering talent and ability. On completion of the common core an 

opportunity is given for those whose capacities and temperaments lead them to prefer the 

practical phases of production to leave school with credit and go to work immediately. 

 Finally, specialization, which has been the source of so much trouble to curriculum 

makers, is subordinated in the proposed plan to vocational guidance. Because the 

common core contains real engineering work, it can be made a measure of engineer-

ing ability that is much more searching and valid than is possible with the current 

abstract, linguistic type of work. And because the common core contains the essential 

elements of all branches of engineering, it gives the student a chance to choose his 

specialty on the basis of experience, and furnishes the faculty with a broader range of 

activities on which to base its judgment of special aptitudes for particular jobs. Hence 

it diverts the attention of the faculty from the construction of specialized grooves 

down which the student may be shoved by routine administrative mechanisms, to the 

study of the personalities, the temperaments, and the capacities of young men who 

are eager to do the work for which they are best fitted. The required change in atti-

tude on the part of the instructor may be materially encouraged by changing the con-

ditions under which faculties serve along the lines suggested in the following chapter. 
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CHAPTER XV 

TEACHERS 

IN the summer of 1824 Amos Eaton was employed by Stephen van Rensselaer to 

deliver a series of lectures on natural science, with experimental illustrations, at a 

number of towns in New York State. The undertaking was so successful as an educa-

tional venture that a school was founded to train teachers to instruct farmers and me-

chanics in the applications of science to industrial production. Thus the first Ameri-

can Engineering School owed its existence to the fact that a man of rare power as a 

teacher had been found to conduct it. Following the inspiration embodied in it by 

Amos Eaton, the Rensselaer School was for forty years a Mecca for teachers of ap-

plied science. The published works of Professor Eaton prove that he was also a scien-

tific investigator of rare merit. 

 Thirty years later (1853) William Barton Rogers, also a geologist and pioneer in-

vestigator of the geology of Virginia, moved to Boston to find opportunity to teach 

industrial workers how to utilize science in their work. For twenty-five years Profes-

sor Rogers had taught natural science at the University of Virginia with such spirit 

that the aisles and window-seats of his lecture room were often crowded by young 

men eager to listen to the eloquent words of the teacher they so much admired. It was 

in this spirit that he founded the Massachusetts Institute of Technology, and the nine 

men whom he called to be fellow members of the first faculty were all enough inter-

ested in the educational problem to give a large share of their time to its study. 

 The interest in the teaching problem has never disappeared wholly from engineer-

ing schools, as it has from some of the universities. The first, and for many years the 

only association for the study of education in colleges was the Society for the Promo-

tion of Engineering Education, which developed from the engineering congress at the 

Columbian Exposition in 1893. For twenty-five years this organization has carried on 

extended and valuable studies in its field, and there can be little doubt that the recent 

rapid progress in engineering education has been in large measure due to its activi-

ties. At present about one-third of all the teachers in American technological schools 

are enrolled among its members, yet in spite of this, a series of questions on educa-

tional aims, methods, and practices, which was personally presented to the faculties 

at the first seven of the schools visited, proved highly unpopular; and from eighty-

five answers that were turned in it appeared that 38 per cent of the professors spend 

no time at all in study to increase their understanding of educational methods, 60 per 

cent spend from one to ten per cent of their time in this manner, and but 2 per cent 

spend more than this. Obviously it is essential to pay much more attention to the 

study of education if serious progress is desired. 

 Fifty years ago little was required of the college professor beyond his teaching.  

The opportunities for participation in industry were relatively few, and scholarship
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was universally regarded as a valid excuse for the impracticality of academic life. But 

as industrial production has become more and more scientific, the bonds between the 

engineering school and the industries have become closer, until now it is generally 

recognized that intimate cooperation between the business man and the teacher is of 

the greatest benefit to both, for thereby businesses grow more creative and colleges 

more business-like. 

 The infusion of business methods into colleges is of fundamental importance for 

good teaching. The tradition that scholars and investigators have no interest in the 

material rewards of their labors is true only with regard to rewards over and above 

what may be considered as a living wage. It is therefore just as essential for good 

teaching as it is for good work of any other sort that the worker be relieved of worry 

over the means of material support for himself and his family. During the past twenty 

years schools have made very striking progress in the way of stabilizing teachers’ 

tenures and salaries both by larger endowments and appropriations of public funds 

and by better business management. Nevertheless much still remains to be done; for, 

tho teachers’ pay has been slowly increasing, the median salary for a full professor at 

state-supported institutions is now only $2500, and his appointment at some schools 

has to be renewed formally every year. Even at universities where professorial ap-

pointments are ostensibly made for life, teachers of distinction and even entire facul-

ties are at times summarily dismissed by the board of trustees. 

 Two other phases of the problem of laying firm foundations for the profession of 

teaching have already been the subjects of extended investigation and report by the 

Carnegie Foundation for the Advancement of Teaching. Bulletin Number Five, on 

Academic and Industrial Efficiency, indicates how modern business methods may be 

advantageously applied in university organization to liberate teachers from such 

drudgery as care of buildings and grounds, purchasing supplies, publicity, keeping 

records, financial management, and supervision of the material welfare of students. 

At some of the larger schools professors are now free from duties of this sort, but 

many a university man still spends much time and energy running a typewriter, post-

ing accounts, keeping records, or making out requisitions. Bulletin Number Nine 

(1916), on A Comprehensive Plan of Insurance and Annuities for College Teachers, 

describes the principles and methods that have been proved by ten years of experi-

ence and exhaustive study to be essential to a sound and effective system of insur-

ance and annuities for college teachers. An organization for putting this plan into ac-

tion has been formed and financed, thereby supplying one of the most essential ingre-

dients of the business basis on which a new liberalized education may safely be built. 

 The creation of stable financial conditions, the assurance of permanency of tenure, 

of a living wage, of relief from routine clerical work, and of safe insurance against 

old age, however, are not the only requirements for encouraging good teaching. Insti-

tutions that have already achieved these fundamental prerequisites are still ham-

pered by educational conceptions and practices that discourage rather than encourage
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progress in teaching. Prominent among the usages that tend strongly to preserve the 

status quo is the common practice of employing large numbers of recent graduates or 

even of undergraduates as assistants in elementary instruction where the classes are 

large. These assistants have usually received all their training in engineering schools 

that pay not the slightest attention to the professional education of the teacher. When 

such a novice begins his apprenticeship as teacher, his instruction depends entirely on 

the attitude of the head of his department. He may be turned loose with out directions 

of any kind, or he may be given such minute directions that he is apt to become a cog 

in a machine. In any case he instinctively imitates the methods and practices of his 

own teachers, and is kept so busy with routine work that he has neither the time nor 

the inclination to study or make experiments in teaching. That so many eventually 

turn out to be good teachers is a tribute to Yankee adaptability rather than to educa-

tional foresight, but the energy losses due to inevitable blunders during the teacher’s 

period of incubation are a serious drain on the intellectual out put of the schools. In 

some of the best institutions the number of assistants is greater than the number of 

full time professors. 

 In selecting young graduates for assistants in teaching it is customary to pick out 

those who have won high grades in the subjects they are called upon to teach, be-

cause mastery of subject-matter is obviously a first essential for teaching. Several 

schools, however, have recently recognized that this apparently worthy practice may 

be a serious handicap both to progress and to good teaching. Under present systems 

of grading, high marks are quite as likely to indicate adaptability to the professor’s 

point of view, as they are to stand for either mastery of the subject or independence 

of mind. Hence the inbreeding process, even when based on high grades, in reality 

tends strongly to maintain a stolid conservatism which deplores innovations and in-

hibits experimentation. 

 As a remedy for this condition, at one or two schools appointments to the teaching 

staff are made only after the candidate has had one or more years of successful expe-

rience in some phase of engineering practice. In a few of the more progressive de-

partments no man is ever appointed to a full professorship until he has won the 

recognition of the technical experts in his own line of work. In this respect conditions 

may be still further improved by freer use of graded objective tests and of personality 

ratings (page 73). Schools of engineering might also do well to consider seriously 

cooperation with departments of education in the professional training of teachers of 

applied science and in the scientific study of their teaching problems. 
 While the recruiting of the teaching staff from recent graduates tends to maintain con-

ditions as they are, and therefore to inhibit experiments in teaching, the current indiffer-

ence of colleges to problems of education is more directly traceable to the lack of effec-

tive incentives for this work. After the teacher has been liberated from worry over 

material support, his most impelling incentive is his desire for self-expression in crea-

tive work. Universities recognize this fact, and have for forty years been struggling
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to develop conditions that would free creative imagination and expand the bounds of 

knowledge. In this they have been marvelously successful in the field of natural sci-

ence—so much so, that research and the publication of the results of research have 

become the measure of success and the criterion of promotion in most institutions of 

higher education in the United States. So completely has this conception of research 

won recognition that academic promotion is now determined almost wholly by suc-

cess in it. This fact has produced the impression, prevalent in many quarters, that re-

search and teaching are in some way antithetical. Hence the question has often been 

raised whether research should not be discouraged at educational institutions in order 

that teaching might receive a larger share of attention. 

 It is unquestionably true that research, as at present treated, does interfere seriously 

with teaching. Hundreds of college instructors whose interests lie in the human prob-

lems of education, rather than in the material problems of natural science, are now 

being diverted from a study of the teaching problem and induced to undertake re 

search because academic promotion so obviously depends on the latter. Many a 
young man with promise of making an excellent teacher is sidetracked by the require-

ments for the Ph.D. degree and becomes instead, a mediocre researcher. Yet tho much 

that is done under the name of research is but pseudo-research, the university is clearly 

right in its position that the spirit of investigation is an essential factor of university life. 
 The difficulty does not lie in research itself, but in the limitations that still cling to 

the common interpretation of it. Because research has been developed in the field of 

natural science and has wrought such marvels there, its activities have unconsciously 

been thought of as restricted to the problems of the material world. Because the tech-

nique of research and the units and methods of measurement have been so perfected 

in the domain of natural science that great accuracy and definiteness of conclusion 

are now possible, the early struggles for objectively defined standards and scales 

have been forgotten. Hence it seems to many grotesque to talk about research in edu-

cation and the impersonal measurement of the vaguely defined and elusive qualities 

of human beings. The fact that such measurements have as yet been rather crude and 

inconclusive is no reason against trying to improve them, especially now when the 

greatest need of education is a technique and a terminology that will make the results 

of experiments in teaching intelligible to every one. The inability of teachers to carry 

conviction as to the merits of teaching and the meaning of experiments in education 

is one of the chief reasons why teaching fails to receive the recognition accorded to 

research. But as soon as it is possible to measure the results of teaching by imperson-

al means, successful teaching will be as easy to recognize as profitable research. Ob-

jective records of achievement have been found in industry to be one of the best in-

centives to creative work. Hence the line of progress in education does not lie in the 

direction of making arbitrary distinctions between research and teaching, but rather in 

the direction of removing the limitations placed upon the spirit of enquiry so as to 

encourage its expansion to education and human relations generally. 
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 If university trustees, presidents, and faculties will unite in insisting on a scientific 

study of their educational work, they will create the conditions needed to release 

teaching power in the engineering schools. The professors who have teaching interest 

and ability will welcome the opportunity to win recognition in work that arouses their 

enthusiasm and stirs their imagination to creative effort just as the professors who are 

interested in natural science have responded to the opportunity to promote research. 

This should not result in a diminution of output in research, but in a decided increase, 

because it tends to give each man the work he is best fitted to do, and therefore leads 

ultimately to maximum efficiency 

 The practical carrying out of this suggestion in any school is relatively simple, pro 

vided the faculty is ready and able to undertake it in a spirit of disinterestedness and 

helpful cooperation, that is, in a real scientific spirit. Many practical hints concerning 

essential details of operation have been given in preceding chapters. Any faculty that 

will get together and take time to think out their problem can create an organ ism that 

will be a live influence in education; and the doing of it will in two years bring more 

joy to all concerned than forty years of weary effort to maintain things as they are. 

 The good effects of an interest in the scientific study of education in institutions of 

higher learning are not limited to the institutions themselves. For a number of years 

objective methods of measuring the results of training have been gaining favor in the 

lower schools. Until very recently the colleges and universities have looked askance 

at the progress, and refused to do their share by giving professional training to those 

whom they send out to teach. The colleges have thus been a positive hindrance to this 

development, and even now, when more than half of their graduates teach, for a time 

at least, no professional work in education is as a rule required out side of the so-

called teacher’s colleges. Meanwhile the industries have been compelled by the 

slowness of the academic development to establish schools of their own, and have 

organized the National Association of Corporation Schools with an active member-

ship of more than one hundred and twenty-five large corporations, which are as much 

interested in the scientific study of vocational guidance and methods of training as 

they are in industrial research. The scientific study of industrial education thus ranks 

with industrial research as a bond of union between the engineering schools and the 

industries. On the fuller development of both teaching and research depends the reali-

zation of the ultimate aim of engineering education, namely, more intelligent production. 
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THE PROFESSIONAL ENGINEER 

AT the first meeting of the Joint Committee of the National Engineering Societies 

with representatives of the Carnegie Foundation for the Advancement of Teaching it 

was agreed that an analysis of the requirements of the engineering profession was one 

of the first essential steps in this study of technological education. Accordingly a 

number of representative engineers were questioned in personal interviews concern-

ing the factors that are most powerful in determining success in engineering work and 

most effective in building up the engineering profession. These interviews, together 

with a study of the methods of rating college graduates in several large manufactur-

ing companies, indicated that personal qualities such as common sense, integrity, re-

sourcefulness, initiative, tact, thoroughness, accuracy, efficiency, and understanding 

of men are universally recognized as being no less necessary to a professional engi-

neer than are technical knowledge and skill. 

 The statement that individuality counts for as much as learning for the engineer, 

just as it does for the lawyer or the physician, seems like a veritable platitude. Yet 

because the engineering schools have always made it their chief aim to impart the 

technical information needed in industrial production, and because both scientific 

knowledge and industrial practice have grown so rapidly, the attention of technical 

schools has been focused chiefly on keeping up to date in science and practice. The 

university emphasis on research in natural science has also tended to magnify the 

importance of technique and to minimize the importance of personality; until curricu-

la have become so congested with specialized courses that students generally regard 

literature and sociology as unnecessary chores, to be endured rather than enjoyed. 

Therefore it seemed necessary to consider the question whether this emphasis on 

technique is producing a new and higher type of engineer, or whether the engineering 

profession still stakes its faith on the fundamental thesis that personal character is, 

after all, the real foundation for achievement. 

 The results of this enquiry have already been published 1. Briefly, they showed that 

fifteen hundred engineers, who replied in writing to the question: What are the most 

important factors in determining probable success or failure in engineering? men-

tioned personal qualities more than seven times as frequently as they did knowledge 

of engineering science and the technique of practice. A second circular letter stating 

this result was then sent to the thirty thousand members of the four large engineering 

societies, and each was asked to number six groups of qualities headed respectively 

Character, Judgment, Efficiency, Understanding of men, Knowledge, and Technique, 

in the order of importance which he gave them in judging the reasons for engineering 

success and in sizing up young men for employment or for promotion. 

 
1 Engineering Education, vol. vii, No. 3, pp. 125—144, December, 1916; Educational Review, vol. 53, 

January, 1917: Columbia University Quarterly, vol. xix, pp. 56-73, December, 1916. 
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More than seven thousand engineers replied to this request, and their votes placed the 

Character group at the head of the list by a majority of 94.5 per cent, while Tech-

nique was voted to the bottom by an equally decisive majority. A very similar defini-

tion of the essential requirements of the engineer was formulated by Mr. A. M. Wel-

lington and published by him in the Engineering News for May 11, 1893, as the con-

clusion of his well-known series of articles on the engineering schools of that time. 

This definition of the essential characteristics of the professional engineer is im-

portant, because it proves that in spite of the enormous development of scientific in-

formation and technical skill, the engineers of America have not been beguiled into 

thinking that efficient control of the forces of nature is the sole requirement for 

achievement in applied science. Therefore the schools that intend to train engineers 

cannot afford to neglect wholly the personalities of the students. While it is obvious 

that personal traits like integrity, initiative, and common sense cannot be taught di-

dactically like the rule of three, it is no less obvious that the growth of these essential 

characteristics in students may be either fostered and encouraged or inhibited and 

discouraged by the manner in which the school is organized and the subject-matter 

presented. The problems of finding the best organization, of constructing the best 

curriculum, and of discovering the best methods of teaching cannot be solved by log-

ic alone or by research in natural science. As has been abundantly shown in the pre 

ceding chapters, their solution requires extended experiments in education under 

conditions that command respect. 

 The enquiry just described was completed in 1916—a year that will always be 

memorable in the history of engineering because it marks the beginning of a deeper 

public recognition of the importance of the engineer’s function in national life. In that 

year the Federal Government, for the first time in its history, formally recognized the 

engineering profession in the organization of the Naval Consulting Board, the Coun-

cil of National Defense, and the National Research Council. The first of these invited 

the National Engineering Societies to nominate the members of the state committees 

on Industrial Preparedness which compiled an inventory of the industrial resources of 

the country. Representatives of these societies are also members of the National Re-

search Council which has so effectively mobilized the scientific resources of the 

country for national service. The establishment of the Engineering Foundation, the 

United Engineering Societies, and the Engineering Council, and the recent appoint-

ment of one man as secretary of them all, indicates the progress that is being made 

toward the conception that there is really but one profession of engineering, in spite 

of its apparent division into the several well-known branches. 

 War conditions have not only hastened public recognition of the engineer as an ex-

pert in applied science and fostered solidarity of the profession, they have also opened 

to him new fields of activity. Back in 1914 most people believed that the war could not 

last long because enough money could not be found to finance it. But three years
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of experience have made it clear to every one that altho money is plentiful, it is use 

less if there is nothing to buy; so that winning the war depends on increasing produc-

tion by an amount which has been estimated as the output of at least ten million addi-

tional industrial workers. This extra production may be secured either by training 

more workers or by increasing the output per worker by engineering methods. Hence 

there has arisen a pressing demand for men who can deal with labor and with busi-

ness administration in the engineering spirit. This demand is further emphasized by 

the fact discovered by the Federal Trade Commission, that only ten per cent of the 

manufacturers in the United States know their actual costs of production. The deter-

mination of these costs requires a scientific study of production which only an engi-

neer can make. This work involves the analysis and apportionment of overhead ex-

penses, and thus leads at once to such fundamental questions of economic justice as: 

Should the capital invested in idle machinery be paid wages tho idle workingmen are 

not? 

 These new opportunities for the engineer have been gradually developing for a 

number of years, but the profession as a whole has been slow to discern them. The 

war has focused attention on them and precipitated a general recognition of them. It 

is also evident that the mastery of these new activities depends in greater measure 

than does mastery of the traditional types of engineering on the personality of the 

man. The success of a designer of bridges or of machinery is not necessarily impeded 

by lack of insight into human nature or of failure to comprehend the things that man-

kind considers most worth while. But to the man who would deal successfully with 

human labor and with business, personality is usually a greater asset than technical 

knowledge and skill. Therefore as engineering expands into the new fields now open-

ing before it, the conception that character, judgment, efficiency, and under standing 

of men are no less necessary than technical knowledge and skill will become more 

and more impelling, and it will become more and more essential that schools of engi-

neering pay greater attention to the effect of their work on the personal development 

of the students. Altho many specific suggestions as to how this maybe done have 

been made in the preceding chapters, a connected summary of the educational con-

ceptions on which the suggestions are based may serve to make clearer why the cur-

rent organization is inadequate and how the proposed plan more fully meets the pre-

sent requirements and also supplies a sound basis for future growth. 

 The ultimate aim of engineering education has always been and still is more intelli-

gent industrial production. Technical schools were founded when industrial evolution 

had progressed so far as to create a pressing demand for men who knew how to uti-

lize the new and rapidly expanding knowledge of natural science to increase and im-

prove production. Science was then little taught in high schools and colleges, so that 

both the public and the manufacturers were ignorant of it. Under these conditions the 

obvious need was for scientific enlightenment; and this the engineering schools were 

organized to supply. President Rogers’s statements that the immediate
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aim was to supply the intellectual element in production, and that this meant know 

ledge of the fundamental principles of science, were accurately true when he made 

them (1861). 

 The schools have loyally pursued this aim, and have thereby contributed enormous-

ly to the achievement of two striking results; namely, the extension of science in-

struction into the school system generally, and the development of public recognition 

of engineering as a profession, coordinate with theology, medicine, and law. At the 

present day an encouraging fraction of the people are reasonably intelligent in sci-

ence, the worker in applied science has become socially respectable, and there has 

been developed a large conception of the engineering profession. Meanwhile the 

methods of dealing with the material problems of industry in a scientific way have 

been in a measure established, while the more intricate problems of organizing and 

managing men are rapidly pressing forward and demanding engineering treatment. 

The net result is that the curricula and methods of instruction that were devised to 

supply the intellectual element in production by imparting knowledge of natural sci-

ence must be reorganized to meet the new industrial demand for engineering admin-

istrators and the larger professional demand for men of strong personality. The gen-

eral plan of the proposed reorganization is based upon an analysis of engineering 

practice into its three essential factors; namely, knowledge of engineering science, 

skill in technique of application, and judgment in the appraisement of values and 

costs. In every engineering project the overlapping claims of these three essential 

factors must be harmonized with respect to the two fundamental elements of produc-

tion, namely, materials and men. Surely every engineer should have some conception 

of the present conditions and problems in at least the general aspects of all these es-

sential factors and elements. If this be granted, it is easy for any school to discover 

where its curriculum is overloaded and where it is deficient. 

 This analysis also indicates how the present organization of school work can be 

modified so as to furnish a more vital training for professional engineers. Thus, with 

regard to materials, the schools do give careful instruction in the laws of physical 

science and in the properties and uses of materials. Students are taught the relative 

strengths of substances in the materials laboratory, kinematics teaches the principles 

of gearing, the shapes of gear-teeth are worked out in the drawing room, the chemical 

properties are taught in chemistry, mechanics deals with the forces required to over 

come inertia, machine work is relegated to the shop, and so on. But seldom is all this 

information coordinated in a single practical problem, such as determining whether 

mild steel, nickel steel, or phosphor bronze is the best thing to use in making a par-

ticular gear wheel; nor is the student ever asked to judge what combination is likely 

to produce the most valuable result for the price. Yet this balancing of value and cost 

is the controlling factor in all intelligent production. 

 Again, little consideration is given in courses in machine design to the comfort and 

safety of the operator. Yet a punch press, for example, that requires a workman
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to use both hands to operate it is far more intelligent than one that takes a large annu-

al toll of fingers because the driver has one free hand. Similarly the importance of 

good heating, lighting, ventilation, and sanitation in increasing the output of workers 

and in keeping them strong and healthy should always be taken into account. These 

human factors enter in large measure into the determination of the values secured for 

a given cost. 

 It thus appears that an adequate treatment of the first element in production in-

volves not only a scientific presentation of the laws of nature and the properties of 

materials, but also an estimation of the values and costs from both the material and 

the human points of view. The chasm between the school and practical life is due 

largely to a failure to appreciate this fact. The introduction of the study of values and 

costs in all their phases is the most direct method by which the schools can bridge 

this chasm. Such study is also one of the most potent means of liberating creative 

energy and of developing the spirit of investigation. 

 With regard to the second element of production—men —most schools at present 

are doing practically nothing to arouse the students to an intelligent appreciation of 

the problems of personal and human relations in production. Yet these problems are 

every day becoming more acute, as indicated by such movements as Americaniza-

tion, human engineering, industrial engineering, and scientific management, with 

their various efforts to improve the condition of the workman and to increase his out 

put in production. Many of the burning questions of the time lie in this field. The loss 

to industry from turnover—the hiring and firing of workmen—is variously estimated 

at from $150,000,000 to $400,000,000 a year. This expense adds from 7 to 20 per 

cent to the cost of production, and yet it injures rather than benefits the product. What 

are the means to prevent turnover—better housing? better social conditions ? higher 

wages? profit sharing? opportunity for self-expression ?juster economic treatment? or 

more kindliness? Does the time-study method of speeding up work pay? Does it real-

ly relax or wear out the worker? Does it produce the best type of citizen ship among 

the industrial classes? These and many other similar unanswered questions are now 

waiting for an engineering analysis, and the country looks to the engineering schools 

to train men who shall be able to answer them. 

 The training of men for the solution of these human problems cannot be carried out 

in the schoolroom alone. The students must have some vital, first-hand, personal con-

tact with labor and workmen’s conditions, either by a cooperative system, as at the 

Universities of Cincinnati and of Pittsburgh, or thru the industrial service movement, 

or in some other real and living way. Hence meeting this demand requires some form 

of closer cooperation between the engineering school and the industries, better under 

standing of their mutual relations, and willingness on both sides to approach the 

problem with the, true research spirit. Such cooperation is needed not only to give the 

students a vital conception of the workman’s point of view, but also to furnish that 

intimate personal knowledge of the details of production which cannot be secured
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in college laboratories and shops. The lack of this sense of the physical properties of 

materials is one of the chief reasons why less than five per cent of the production 

managers in this country are college-trained men. 

 It is, however, in the matter of estimating values and costs that this problem as-

sumes its most far-reaching consequences. The following are some of the typical 

problems now pressing for solution in this field. What is the effect of good housing 

on the development of the men, the efficiency of production, and the size of the prof-

its? What is the most effective incentive to maximum output —the bonus system? 

opportunity for cooperation in management? opportunity for creative work? or short-

er hours? Does the assurance of justice and a square deal always tend to increase out-

put and also to foster the growth of a social spirit and of patriotism? Does a plant pay 

better when profits and output are increased by efficiency methods which give work 

men no chance for self-expression? or when the development of the workmen is 

made an aim as well? 

 Every manager will estimate the values and costs of these various methods of treat-

ing workmen in accordance with his own philosophy of life. There is as yet no con-

clusive evidence to prove these cases one way or the other. The successful manager 

to-day is the one who estimates most accurately the human values involved. There 

fore, one of the most important contributions that the school can make toward the 

education of the engineer is to guide him in developing an attitude toward life and a 

philosophy of living that will enable him to judge rightly as to the things humanity 

considers most worth while. This is the meaning of the professional demand for larg-

er opportunities for cultural and literary studies. It cannot be met by merely requiring 

more work of the ordinary academic type in history, in economics, and in languages; 

but rather by introducing the consideration of values and costs into the regular engi-

neering instruction in some such way as that described in Chapters XIII and XIV. 
 Some attention has already been paid by the engineering schools to the problem of 

organizing men into effective working groups. At the Massachusetts Institute of 

Technology, Pennsylvania State College, and several other schools special courses in 

engineering administration are now given regularly. These courses deal mainly with 

the various types of organization, the technique of different kinds of management, 

accountancy, banking methods, and economic theory. All of this is, of course, essen-

tial to every engineering administrator. Industry sorely needs men thus trained; for 

the determination of costs is relatively easy so far as materials and labor are con-

cerned; but the overhead, because it includes the cost of maintaining the organization, 

is a matter of great difficulty. Analysis by engineers shows that the largest wastes in 

production are in the overhead expenses, and result from faults in organization, such 

as idle machinery, inefficient maintenance, poor routing, lack of foresight in purchas-

ing, delays from lack of instruction from the office, and so on. The study of overhead 

expenses has led to many searching questions of economics and industrial justice,
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with which the student will have to deal after graduation, but to which the schools 

have not yet given serious attention. But it is gradually becoming evident that the 

ultimate success of any organization depends on its spirit; and this, in turn, is deter-

mined by the manner in which those in control coordinate and interrelate the intelli-

gences and imaginations of men. Great organizers and leaders in industry are those 

who not only master the laws of nature, but who also shape and control their organi-

zation thru their power of estimating accurately the value which each worker esteems 

most highly. The engineers instinctively recognize this fact and the educational im-

plications of it when they declare that character, judgment, efficiency, and under-

standing of men are even more essential to the practising engineer than is knowledge 

of the science and technique of engineering. 

 The educational interpretation of this professional demand is not nearly so mysteri-

ous as many have tried to make it. For the schools have already discovered that stu-

dents learn best when they are inspired by the conviction that the work is really worth 

while. One of the most effective ways of making work seem worth while is by con-

stantly relating it to the consideration of the whole range of values involved arid all 

the costs. Every decision in daily life is an answer to the question whether the value 

is worth the cost. The omission of this mainspring of all investigation and enquiry 

from school work is perhaps the chief reason for the breach that separates the schools 

from life. Hence the first message of the profession to the schools is—Motivate your 

work by making it worth while; liberate the spirit of investigation by making the 

game worth the candle; for character, judgment, efficiency, and understanding of 

men develop best in men who work with enthusiasm and intelligence at things that 

they believe to be worth while. 

 But there is a second message in the professional demand. For the spirit of investi-

gation accomplishes valuable results only when the investigator is resourceful, accu-

rate, and efficient in mastering facts, and when he has judgment, common sense, and 

a wide perspective. These qualities depend on the ability to put things in their proper 

places at the proper times, which ability depends in turn on the perception of intrinsic 

relationships. The most successful organizer and executive is the one who perceives 

relationships so clearly that he can build an organization which acts to liberate the 

creative energy of each in ways that prove most helpful. Hence training in ability to 

perceive relationships —interrelation—is one essential for the development of re-

sourcefulness, judgment, common sense, perspective, efficiency, and the rest. This is 

also one essential to the acquisition of knowledge. Therefore in so far as the school 

work develops the student’s ability to perceive relationships, in so far do knowledge 

and the desired personal traits increase together.  

 It thus appears that so far as the school work itself goes, the professional demand 

for upbuilding of character along with increase of knowledge suggests at least two 

promising lines of educational experiment, namely, motivation and interrelation. The 
lower schools have long ago recognized the possibilities of these fields of investigation.
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In fact, the educational progress of the past century has centered around these two 

conceptions. Many fruitful experiments and a large literature have gathered about the 

subject of motivation and the related topics of interest, formal discipline, and trans-

ferable training. In like manner much has been accomplished toward interrelation 

thru efforts that have been made to correlate various subjects, as indicated by the 

terms commercial-geography, business-arithmetic, household-science, domestic-

economy, agricultural-chemistry, soil-physics, and the like. 

The organization of curricula proposed in Chapters XIII and XIV is suggested as one 

practical method of harmonizing the conflicting demands of technical skill and liberal 

education. It coordinates the results of numerous individual experiments in a con-

sistent program. It recognizes all the essential elements and factors of engineering as 

well as the educational requirements of motivation and interrelation. It is not a utopi-

an dream, but a summation of the best that has been thought, said, and done in educa-

tion during the past two centuries. Finally, it embodies the modern conception of the 

professional engineer, not as a conglomerate of classical scholar ship and mechanical 

skill, but as the creator of machines and the interpreter of their human significance, 

well qualified to increase the material rewards of human labor and to organize indus-

try for the more intelligent development of men. 

 
 

 


