Points-to Analysis

Xiaokang Qiu
Purdue University

ECE 468
Adapted from Kulkarni 2012

November 16, 2016
Simple example

What are the dependences in this program?

Problem: just looking at variable names will not give you the correct information

- After statement S2, program names “x” and “*ptr” are both expressions that refer to the same memory location.
- We say that ptr points-to x after statement S2.

In a C-like language that has pointers, we must know the points-to relation to be able to determine dependences correctly.
Program model

• For now, only types are int and int*
• No heap
 – All pointers point to only to stack variables
• No procedure or function calls
• Statements involving pointer variables:
 – address: $x := &y$
 – copy: $x := y$
 – load: $x := *y$
 – store: $*x := y$
• Arbitrary computations involving ints
Points-to relation

- Directed graph:
 - nodes are program variables
 - edge (a,b): variable a points-to variable b

- Can use a special node to represent NULL
- Points-to relation is different at different program points
Points-to graph

- Out-degree of node may be more than one
 - if points-to graph has edges (a,b) and (a,c), it means that variable a may point to either b or c
 - depending on how we got to that point, one or the other will be true
 - path-sensitive analyses: track how you got to a program point (we will not do this)

```c
if (p)
    then x := &y
else x := &z
.....
```

What does x point to here?
Ordering on points-to relation

• Subset ordering: for a given set of variables
 – Least element is graph with no edges
 – $G_1 \leq G_2$ if G_2 has all the edges G_1 has and maybe some more

• Given two points-to relations G_1 and G_2
 – $G_1 \cup G_2$: least graph that contains all the edges in G_1 and in G_2
Overview

• We will look at three different points-to analyses.
 • Flow-sensitive points-to analysis
 – Dataflow analysis
 – Computes a different points-to relation at each point in program
 • Flow-insensitive points-to analysis
 – Computes a single points-to graph for entire program
 – Andersen’s algorithm
 • Natural simplification of flow-sensitive algorithm
 – Steensgaard’s algorithm
 • Nodes in tree are equivalence classes of variables
 – if x may point-to either y or z, put y and z in the same equivalence class
 • Points-to relation is a tree with edges from children to parents rather than a general graph
 • Less precise than Andersen’s algorithm but faster
Example

Flow-sensitive algorithm

Andersen’s algorithm

Steensgard’s algorithm
Notation

• Suppose S and S1 are set-valued variables.
• S \leftarrow S1: strong update
 – set assignment
• S U \leftarrow S1: weak update
 – set union: this is like S \leftarrow S U S1
Flow-sensitive algorithm
Dataflow equations

- Forward flow, any path analysis
- Confluence operator: $G_1 \cup G_2$
- Statements

$$\text{G}$$

$x := \& y$

$G' = G \text{ with } pt'(x) \leftarrow \{y\}$

$$\text{G}$$

$x := y$

$G' = G \text{ with } pt'(x) \leftarrow pt(y)$

$$\text{G}$$

$x := * y$

$G' = G \text{ with } pt'(x) \leftarrow U pt(a)$

for all a in $pt(y)$

$$\text{G}$$

$*x := y$

$G' = G \text{ with } pt'(a) \leftarrow pt(y)$

for all a in $pt(x)$
Dataflow equations (contd.)

- **Strong updates**
 - $x := \&y$
 - $G' = G$ with $pt'(x) \leftarrow \{y\}$
 - $x := y$
 - $G' = G$ with $pt'(x) \leftarrow pt(y)$

- **Weak update (why?)**
 - $x := *y$
 - $G' = G$ with $pt'(x) \leftarrow U pt(a)$ for all a in $pt(y)$
 - $*x := y$
 - $G' = G$ with $pt'(a) U \leftarrow pt(y)$ for all a in $pt(x)$
Strong vs. weak updates

• Strong update:
 – At assignment statement, you know precisely which variable is being written to
 – Example: $x := \ldots$
 – You can remove points-to information about x coming into the statement in the dataflow analysis.

• Weak update:
 – You do not know precisely which variable is being updated; only that it is one among some set of variables.
 – Example: $*x := \ldots$
 – Problem: at analysis time, you may not know which variable x points to (see slide on control-flow and out-degree of nodes)
 – Refinement: if out-degree of x in points-to graph is 1 and x is known not be nil, we can do a strong update even for $*x := \ldots$
Structures

- **Structure types**
 - `struct cell {int value; struct cell *left, *right;}
 - `struct cell x,y;
- **Use a “field-sensitive” model**
 - `x and y are nodes
 - each node has three internal fields labeled `value, `left, `right
- **This representation permits pointers into fields of structures**
 - If this is not necessary, we can simply have a node for each structure and label outgoing edges with field names
int main(void)
{
 struct cell {int value;
 struct cell *next;
 };
 struct cell x, y, z, *p;
 int sum;

 x.value = 5;
 x.next = &y;
 y.value = 6;
 y.next = &z;
 z.value = 7;
 z.next = NULL;

 p = &x;
 sum = 0;
 while (p != NULL) {
 sum = sum + (*p).value;
 p = (*p).next;
 }
 return sum;
}
Flow-insensitive algorithms
Flow-insensitive analysis

- Flow-sensitive analysis computes a different graph at each program point.
- This can be quite expensive.
- One alternative: flow-insensitive analysis
 - Intuition: compute a points-to relation which is the least upper bound of all the points-to relations computed by the flow-sensitive analysis
 - Approach:
 - Ignore control-flow
 - Consider all assignment statements together
 - replace strong updates in dataflow equations with weak updates
 - Compute a single points-to relation that holds regardless of the order in which assignment statements are actually executed
Andersen's algorithm

• Statements

- $x := &y$
 - $G = G$ with $\text{pt}(x) \leftarrow \{y\}$

- $x := y$
 - $G = G$ with $\text{pt}(x) \leftarrow \text{pt}(y)$

- $x := *y$
 - $G = G$ with $\text{pt}(x) \leftarrow \text{pt}(a)$ for all a in $\text{pt}(y)$

- $*x := y$
 - $G = G$ with $\text{pt}(a) \leftarrow \text{pt}(y)$ for all a in $\text{pt}(x)$

- G

 $G = G$ with $\text{pt}(x) \leftarrow \{y\}$

 weak updates only
```c
int main(void)
{
    struct cell {
        int value;
        struct cell *next;
    };
    struct cell x, y, z, *p;
    int sum;
    x.value = 5;
    x.next = &y;
    y.value = 6;
    y.next = &z;
    z.value = 7;
    z.next = NULL;
    p = &x;
    sum = 0;
    while (p != NULL) {
        sum = sum + (*p).value;
        p = (*p).next;
    }
    return sum;
}
```

Assignments for flow-insensitive analysis
Solution to flow-insensitive equations

- Compare with points-to graphs for flow-sensitive solution
- Why does p point-to NULL in this graph?
Andersen’s algorithm formulated using set constraints

- Statements

\[pt : \text{var} \quad \mathbb{R} \quad 2^{\text{var}} \]

\[x := &y \]
\[y \in pt(x) \]
\[\forall a \in pt(y). pt(x) \supseteq pt(a) \]

\[x := \star y \]

\[x := y \]
\[pt(x) \supseteq pt(y) \]
\[\forall a \in pt(x). pt(a) \supseteq pt(y) \]

\[\star x := y \]

\[\forall a \in pt(x). pt(a) \supseteq pt(y) \]
Steensgard’s algorithm

• Flow-insensitive
• Computes a points-to graph in which there is no fan-out
 – In points-to graph produced by Andersen’s algorithm, if x points-to y and z, y and z are collapsed into an equivalence class
 – Less accurate than Andersen’s but faster
• We can exploit this to design an $O(N^\alpha(N))$ algorithm, where N is the number of statements in the program.
Steensgård’s algorithm using set constraints

- **Statements**

 \[pt : \text{var} \overset{\circ}{\bowtie} 2^{\text{var}} \]

 No fan-out \[\forall x. \forall y, z \in pt(x). pt(y) = pt(z) \]

 - \[x := &y \]
 \[y \in pt(x) \]

 - \[x := *y \]
 \[\forall a \in pt(y). pt(x) = pt(a) \]

 - \[x := y \]
 \[pt(x) = pt(y) \]

 - \[*x := y \]
 \[\forall a \in pt(x). pt(a) = pt(y) \]
Trick for one-pass processing

• Consider the following equations

\[pt(x) = pt(y) \]
\[z \in pt(x) \]
\[dummy \in pt(x) \]
\[pt(x) = pt(y) \]
\[z \in pt(x) \]

• When first equation on left is processed, x and y are not pointing to anything.

• Once second equation is processed, we need to go back and reprocess first equation.

• Trick to avoid doing this: when processing first equation, if x and y are not pointing to anything, create a dummy node and make x and y point to that
 - this is like solving the system on the right

• It is easy to show that this avoids the need for revisiting equations.
Algorithm

• Can be implemented in single pass through program
• Algorithm uses union-find to maintain equivalence classes (sets) of nodes
• Points-to relation is implemented as a pointer from a variable to a representative of a set
• Basic operations for union find:
 – rep(v): find the node that is the representative of the set that v is in
 – union(v1,v2): create a set containing elements in sets containing v1 and v2, and return representative of that set
class var {
 //instance variables
 points_to: var;
 name: string;

 //constructor; also creates singleton set in union-find data structure
 var(string);
 //class method; also creates singleton set in union-find data structure
 make-dummy-var():var;

 //instance methods
 get_pt(): var;
 set_pt(var);//updates rep
}

rec_union(var v1, var v2) {
 p1 = pt(rep(v1));
 p2 = pt(rep(v2));
 t1 = union(rep(v1), rep(v2));
 if (p1 == p2)
 return;
 else if (p1 != null && p2 != null)
 t2 = rec_union(p1, p2);
 else if (p1 != null) t2 = p1;
 else if (p2 != null) t2 = p2;
 else t2 = null;
 t1.set_pt(t2);
 return t1;
}

pt(var v) {
 //v does not have to be representative
 t = rep(v);
 return t.get_pt();
}
Algorithm

Initialization: make each program variable into an object of type var and enter object into union-find data structure

for each statement S in the program do
 S is x := &y: {if (pt(x) == null)
 x.set-pt(rep(y));
 else rec-union(pt(x),y);
 }
 S is x := y: {if (pt(x) == null and pt(y) == null)
 x.set-pt(var.make-dummy-var());
 y.set-pt(rec-union(pt(x),pt(y)));
 }
 S is x := *y:{if (pt(y) == null)
 y.set-pt(var.make-dummy-var());
 var a := pt(y);
 if(pt(a) == null)
 a.set-pt(var.make-dummy-var());
 x.set-pt(rec-union(pt(x),pt(a)));
 }
 S is *x := y:{if (pt(x) == null)
 x.set-pt(var.make-dummy-var());
 var a := pt(x);
 if(pt(a) == null)
 a.set-pt(var.make-dummy-var());
 y.set-pt(rec-union(pt(y),pt(a)));
 }
Inter-procedural analysis

• What do we do if there are function calls?

```c
x1 = &a
y1 = &b
swap(x1, y1)
```

```c
x2 = &a
y2 = &b
swap(x2, y2)
```

```c
swap (p1, p2) {
    t1 = *p1;
    t2 = *p2;
    *p1 = t2;
    *p2 = t1;
}
```
Two approaches

• Context-sensitive approach:
 – treat each function call separately just like real program execution would
 – problem: what do we do for recursive functions?
 • need to approximate

• Context-insensitive approach:
 – merge information from all call sites of a particular function
 – in effect, inter-procedural analysis problem is reduced to intra-procedural analysis problem

• Context-sensitive approach is obviously more accurate but also more expensive to compute
Context-insensitive approach

\[
\begin{align*}
x_1 &= \&a \\
y_1 &= \&b \\
\text{swap}(x_1, y_1)
\end{align*}
\]

\[
\begin{align*}
x_2 &= \&a \\
y_2 &= \&b \\
\text{swap}(x_2, y_2)
\end{align*}
\]

\[
\begin{align*}
\text{swap} (p_1, p_2) \{ \\
t_1 &= *p_1; \\
t_2 &= *p_2; \\
*p_1 &= t_2; \\
*p_2 &= t_1;
\}
\]
Context-sensitive approach

\[
x_1 = &a \\
y_1 = &b \\
swap(x_1, y_1)
\]

\[
x_2 = &a \\
y_2 = &b \\
swap(x_2, y_2)
\]

\[
\begin{align*}
\text{swap} & \ (p_1, p_2) \ \{ \\
& \quad t_1 = *p_1; \\
& \quad t_2 = *p_2; \\
& \quad *p_1 = t_2; \\
& \quad *p_2 = t_1;
\}
\end{align*}
\]
Context-insensitive/Flow-insensitive Analysis

• For now, assume we do not have function parameters
 – this means we know all the call sites for a given function

• Set up equations for binding of actual and formal parameters at each call site for that function
 – use same variables for formal parameters for all call sites

• Intuition: each invocation provides a new set of constraints to formal parameters
Swap example

\[
\begin{align*}
x1 &= \&a \\
y1 &= \&b \\
p1 &= x1 \\
p2 &= y1
\end{align*}
\begin{align*}
x2 &= \&a \\
y2 &= \&b \\
p1 &= x2 \\
p2 &= y2
\end{align*}
\begin{align*}
t1 &= \ast p1; \\
t2 &= \ast p2; \\
\ast p1 &= t2; \\
\ast p2 &= t1;
\end{align*}
\]
Heap allocation

• Simplest solution:
 – use one node in points-to graph to represent all heap cells

• More elaborate solution:
 – use a different node for each malloc site in the program

• Even more elaborate solution: shape analysis
 – goal: summarize potentially infinite data structures
 – but keep around enough information so we can disambiguate pointers from stack into the heap, if possible
Summary

<table>
<thead>
<tr>
<th>Less precise</th>
<th>More precise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality-based</td>
<td>Subset-based</td>
</tr>
<tr>
<td>Flow-insensitive</td>
<td>Flow-sensitive</td>
</tr>
<tr>
<td>Context-insensitive</td>
<td>Context-sensitive</td>
</tr>
</tbody>
</table>

No consensus about which technique to use
Experience: if you are context-insensitive, you might as well be flow-insensitive
History of points-to analysis

![Figure 1: A Brief History of Pointer Analysis](source)

<table>
<thead>
<tr>
<th>Context-sensitive</th>
<th>Equality-based</th>
<th>Subset-based</th>
<th>Flow-sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1996: 4+ MLOC</td>
<td>2001: 1 MLOC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>first paper on pointer analysis</td>
<td>first scalable pointer analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berndt et al. [2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008: 500 KLOC</td>
<td></td>
<td>1990: 50 KLOC</td>
</tr>
<tr>
<td></td>
<td>first to use BDDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cloning based BDDs</td>
<td>Wilson and Lam [37]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1998: 30 KLOC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Whaley and Rinard [36]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1999: 80 KLOC</td>
</tr>
</tbody>
</table>

from Ryder and Rayside