
When Research Comes Full Circle:
A Missed Opportunity and What to Learn From It

Michael Reiter

James B. Duke Distinguished Professor

Computer Science and Electrical & Computer Engineering, Duke University

and

Researcher, Chainlink Labs

1

Who Is This Person?

2

• Best Paper Award, IEEE S&P 1989

• IEEE CSF PC Chair, 1994-5
• ACM CCS PC Co-Chair, 1996-7
• ACM CCS General Chair, 1998
• IEEE S&P PC Co-Chair, 1998-9
• IEEE S&P General Chair, 2001

Dr. Li Gong

Who Is This Person? Dr. Li Gong

• Co-winner of the 1994 IEEE ComSoc Leonard G. Abraham Prize

3

I’ll return to Li later …

Passwords are Dead (2004)

4

Long Live Passwords!

5

IEEE Security & Privacy, Jan/Feb 2012

Multifactor Authentication (MFA)?

• Can be very effective where its
adoption can be enforced

• But many sites requiring a low-
friction user experience will not

• “People significantly preferred
passwords over MFA and were
willing to pay about a $3 premium
(on a $60 smart speaker) to have
the password compared to MFA.”

 Prof. Pardis Emami-Naeini, based on Emami-Naeini et al.,
“Are Consumers Willing to Pay for Security and Privacy of

IoT Devices?”, USENIX Security 2023.

2020:

2021:

2022:

PassKeys!

7

Credential Abuse across Sites

8

Password
reuse

User

(Alice)

Credential Abuse across Sites

9

Password
reuse

99% of compromised user accounts come from password
reuse.

--- Patrick Heim (Head of Trust & Security, Dropbox) [2016]

Credential Abuse across Sites

10

Password
reuse

The reuse of passwords is the No. 1 cause of harm on the
internet.

--- Alex Stamos (former CSO, Facebook) [2016]

Credential stuffing is enormously effective due to the
password reuse problem.

--- Troy Hunt (Regional Director, Microsoft) [2017]

Credential Abuse across Sites

11

Database
breaches

Password
reuse

Credential Abuse across Sites

12

Database
breaches

Password
reuse

Time

The 15 Biggest Data Breaches of the 21st Century – CSO Online (Jan 24, 2021)

Year Site Users (M) Usernames Passwords Email addrs Other

2008 Heartland Payment 134 ○ ○ ○ ●

2012 LinkedIn 165 ○ ◑ ● ○

2013 Adobe 153 ● ● ○ ●

MySpace 360 ● ◑ ● ●

Yahoo! 3000 ○ ● ● ●

2014 eBay 145 ○ ◑ ○ ●

Marriott 500 ○ ○ ○ ●

2015 NetEase 235 ○ ● ● ○

2016 Adult Friend Finder 412 ○ ● ● ●

2017 Equifax 150 ○ ○ ○ ●

2018 Dubsmash 162 ● ◑ ● ○

My Fitness Pal 150 ● ◑ ● ○

2019 Canva 61 ● ◑ ● ●

Zynga 218 ● ◑ ● ●

2020 Sina Weibo 538 ● ○ ○ ●

Credential Abuse across Sites

13

Database
breaches

Password
reuse

Time

The 15 Biggest Data Breaches of the 21st Century – CSO Online (Jan 24, 2021)

Year Site Users (M) Usernames Passwords Email addrs Other

2008 Heartland Payment 134 ○ ○ ○ ●

2012 LinkedIn 165 ○ ◑ ● ○

2013 Adobe 153 ● ● ○ ●

MySpace 360 ● ◑ ● ●

Yahoo! 3000 ○ ● ● ●

2014 eBay 145 ○ ◑ ○ ●

Marriott 500 ○ ○ ○ ●

2015 NetEase 235 ○ ● ● ○

2016 Adult Friend Finder 412 ○ ● ● ●

2017 Equifax 150 ○ ○ ○ ●

2018 Dubsmash 162 ● ◑ ● ○

My Fitness Pal 150 ● ◑ ● ○

2019 Canva 61 ● ◑ ● ●

Zynga 218 ● ◑ ● ●

2020 Sina Weibo 538 ● ○ ○ ●

Credential Abuse across Sites

14

Database
breaches

Password
reuse

Time

The 15 Biggest Data Breaches of the 21st Century – CSO Online (Jan 24, 2021)

Year Site Users (M) Usernames Passwords Email addrs Other

2008 Heartland Payment 134 ○ ○ ○ ●

2012 LinkedIn 165 ○ ◑ ● ○

2013 Adobe 153 ● ● ○ ●

MySpace 360 ● ◑ ● ●

Yahoo! 3000 ○ ● ● ●

2014 eBay 145 ○ ◑ ○ ●

Marriott 500 ○ ○ ○ ●

2015 NetEase 235 ○ ● ● ○

2016 Adult Friend Finder 412 ○ ● ● ●

2017 Equifax 150 ○ ○ ○ ●

2018 Dubsmash 162 ● ◑ ● ○

My Fitness Pal 150 ● ◑ ● ○

2019 Canva 61 ● ◑ ● ●

Zynga 218 ● ◑ ● ●

2020 Sina Weibo 538 ● ○ ○ ●

Credential Abuse across Sites

15

Database
breaches

Password
reuse Among 1665 database breaches identified between

Nov. 2018 and Oct. 2019, 60% leaked credentials.
--- Verizon [2020]

The estimated average delay between when a breach
occurs and when the breach is discovered ranges from
7 to 15 months.

--- IBM [2020] and Shape Security [2018]

Credential Abuse across Sites

16

Credential
stuffing

Breached
passwords

Password
reuse

Credential Abuse across Sites

17

Credential
stuffing

Breached
passwords

Password
reuse

Breached
passwords

Password
reuse

Attacker

Credential stuffing

Alice’s leaked
password

“alice1234”

Credential Abuse across Sites

18

Credential
stuffing

Breached
passwords

Password
reuse

Credential stuffing imposes actual losses
estimated at $300M, $400M, $1.7B, and
$6B on the hotel, airline, consumer
banking, and retail industries, per year.

--- Shape Security [2018]

Akamai observed 193 billion credential
stuffing attempts in 2020 alone.

--- Akamai [2021]

Credential Abuse across Sites

19

Credential
stuffing

Breached
passwords

Password
reuse

Account
takeovers

Credential Abuse across Sites

20

The Colonial Pipeline Attack (May 2021)

Credential Abuse across Sites

21

The Colonial Pipeline Attack (May 2021)

An employee from a company reused a

complicated password across his/her company VPN
account and an account at a different website.

Password
reuse

Credential Abuse across Sites

22

The Colonial Pipeline Attack (May 2021)

An employee from a company reused a

complicated password across his/her company VPN
account and an account at a different website.

Password
reuse

Breached
passwords

The password got leaked when the other website

was breached.

Credential Abuse across Sites

23

The Colonial Pipeline Attack (May 2021)

Password
reuse

Breached
passwords

Credential
stuffing

An attacker stuffed the leaked password

at the employee’s VPN account …

Credential Abuse across Sites

24

The Colonial Pipeline Attack (May 2021)

Password
reuse

Breached
passwords

Credential
stuffing

Account
takeovers

… and took over the VPN account, getting

access to the company’s internal network.

The attacker disabled part of the company’s
network and asked for $5M in ransom to
recover it.

Credential Abuse across Sites

25

The Colonial Pipeline Attack (May 2021)

Password
reuse

Breached
passwords

Credential
stuffing

Account
takeovers

“The closure saw supplies of diesel, petrol and jet fuel tighten
across the US, with prices rising, an emergency waiver passed on
Monday and a number of states declaring an emergency.”

 -- BBC

Where to Tackle this Problem?

26

Credential
stuffing

Breached
passwords

Password
reuse

Account
takeovers

K. C. Wang and M. K. Reiter, “Using Amnesia to detect credential
database breaches ”, USENIX Security Symposium, 2021.

K. C. Wang and M. K. Reiter, “Bernoulli honeywords”, ISOC Network
and Distributed System Security Symposium, 2024.

Where to Tackle this Problem?

27

Credential
stuffing

Breached
passwords

Password
reuse

Account
takeovers

K. C. Wang and M. K. Reiter, “Using Amnesia to detect credential
database breaches ”, USENIX Security Symposium, 2021.

K. C. Wang and M. K. Reiter, “Bernoulli honeywords”, ISOC Network
and Distributed System Security Symposium, 2024.

Honeywords
(Juels & Rivest 2013)

Web Server
Credential Database

UID: alice@gmail.com

password2

Password*:

password3

password4

password1

password5

Decoy passwords
(honeywords) are
generated based
on the real one.

Real user password

* Assuming that attacker can reverse all leaked password (salted) hashes offline,
Here we ignore the use of hashing (and salting) for simplicity.

Honeywords
(Juels & Rivest 2013)

Web Server
Credential Database

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

???

Honeywords
(Juels & Rivest 2013)

Web Server
Credential Database

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5
2

The index of the real
user password

???

Honeywords
(Juels & Rivest 2013)

Web Server
Credential Database

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5
2

Honeywords
(Juels & Rivest 2013)

Web Server
Credential Database

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

Honeychecker

UID: alice@gmail.com

Password index:

Use a 2nd secure component to store
the index of the real passwords

2

Honeywords
(Juels & Rivest 2013)

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

Honeychecker

UID: alice@gmail.com

Password index:

2
???

BREACHED Web Server
Credential Database

Honeywords
(Juels & Rivest 2013)

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

User

Authentication

”4?”

BREACHED Web Server
Credential Database

“No. Breach alert!”

Honeychecker

UID: alice@gmail.com

Password index:

2
???

Honeywords
(Juels & Rivest 2013)

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

BREACHED Web Server
Credential Database

Juels & Rivest’s proposal relies on
the secret (indices) persistently
stored at 2nd SECURE component.

UID: alice@gmail.com

Password index:

2

Honeychecker

???

Honeywords
(Juels & Rivest 2013)

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

BREACHED Web Server
Credential Database

Juels & Rivest’s proposal relies on
the secret (indices) persistently
stored at 2nd SECURE component.

UID: alice@gmail.com

Password index:

2

Honeychecker

???

Can we still use honeywords to detect credential
database breaches without assuming the security of
any persistently stored secrets?

Honeywords
(Juels & Rivest 2013)

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

BREACHED Web Server
Credential Database

Juels & Rivest’s proposal relies on
the secret (indices) persistently
stored at 2nd SECURE component.

UID: alice@gmail.com

Password index:

2

Honeychecker

???

Can we still use honeywords to detect credential
database breaches without assuming the security of
any persistently stored secrets?

 YES!!

Amnesia

Web Server
Credential Database

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

Decoy passwords
(honeywords) are
generated based on
the real one.

Real password

Amnesia

Web Server
Credential Database

UID: alice@gmail.com

password2

Password:

password3

password4

password1

password5

After a successful login:

Amnesia

Web Server
Credential Database

UID: alice@gmail.com

password2*

Password:

password3

password4

password1

password5

After a successful login:

1. Mark the last submitted
password

Amnesia

UID: alice@gmail.com

password2*

Password:

password3

password4*

password1*

password5

Web Server
Credential Database

After a successful login:

1. Mark the last submitted
password

2. Mark each of other
passwords with a preset
probability

Amnesia

UID: alice@gmail.com

password2*

Password:

password3

password4*

password1*

password5

Web Server
Credential Database

During a login attempt:

If the submitted
password is one of the

marked passwords:

Successful login &
No breach alert.

Amnesia

UID: alice@gmail.com

password2*

Password:

password3

password4*

password1*

password5

Web Server
Credential Database

During a login attempt:

If the submitted
password is one of the
unmarked passwords:

Breach alert!

Submitted password:
password2

Amnesia

During login

password2*

password3

password4*

password1*

password5

After login

password2*

password3*

password4

password1

password5*

User password: password2

The real password
remains marked.

Amnesia

During login

password2*

password3

password4*

password1*

password5

After login

password2

password3*

password4*

password1

password5*

User password: password2

Submitted password:
password4

Amnesia

During login

password2*

password3

password4*

password1*

password5

After login

password2

password3*

password4*

password1

password5*

User password: password2

Submitted password:
password4

The submitted honeyword will
remain marked.

Amnesia

During login

password2*

password3

password4*

password1*

password5

After login

password2

password3*

password4*

password1

password5*

User password: password2

Submitted password:
password4

It’s possible that the real user
password will be unmarked.

Amnesia

During login

password2*

password3

password4*

password1*

password5

After login

password2

password3*

password4*

password1

password5*

User password: password2

Submitted password:
password4

It’s possible that the real user
password will be unmarked.

User’s next login with
the real password

would trigger a breach
detection.

Stuffing Honeywords to Avoid Detection

alice@gmail.com:

 password1

 password2

 password3

 password4

Site A

alice@gmail.com:

 password2

Site B

???

Stuffing Honeywords to Avoid Detection

alice@gmail.com:

 password1

 password2

 password3

 password4

alice@gmail.com:

 password2Try to log in with

password1/2/3/4REAL

Site A Site B

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

1. Obtain honeywords
via a breach

2. Stuff Site A’s
honeywords at Site B

Site B
(Monitor)

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

Site B
(Monitor)

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

Site B
(Monitor)

▪ Should not leak Target’s stored passwords to Monitor

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

Site B
(Monitor)

▪ Should not leak Target’s stored passwords to Monitor

▪ Should not leak the submitted password at Monitor to Target if the
password is not one of Target’s stored passwords

Detecting Remotely Stuffed Honeywords

3. “Hey, someone submitted one
of your honeywords here. Check
this out.”

Site A
(Target)

Site B
(Monitor)

▪ Should not leak Target’s stored passwords to Monitor

▪ Should not leak the submitted password at Monitor to Target if the
password is not one of Target’s stored passwords

▪ Should not allow the monitor to trigger a false detection if no
breach has happened to Target

Private Set Operation (PSO) Protocols

56

Site
A

Site
B

PSO Protocols

ራ

𝑚∈G

𝐶𝑝𝑘

Private Set Operation (PSO) Protocols

57

Site
A

Site
B

Set X

PSO Protocols

ራ

𝑚∈G

𝐶𝑝𝑘

Private Set Operation (PSO) Protocols

58

Site
A

Site
B

Set X Set Y

PSO Protocols

ራ

𝑚∈G

𝐶𝑝𝑘

Private Set Operation (PSO) Protocols

59

Site
A

Site
B

Set X Set Y

Nothing

PSO Protocols

ራ

𝑚∈G

𝐶𝑝𝑘

Private Set Operation (PSO) Protocols

60

Site
A

Site
B

Set X Set Y

Needed information only, e.g.:

• Set intersection

• Set intersection size

• …

Nothing

PSO Protocols

ራ

𝑚∈G

𝐶𝑝𝑘

PSO for Password Database Breach Detection

61

Site
A

Site
B

Alice’s password and
honeywords

Incorrect passwords
tried at Alice’s account

Needed information:

• Set intersection including >= 1 honeyword: password database breach

Nothing

PSO Protocols

ራ

𝑚∈G

𝐶𝑝𝑘

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

f1(h(“alice”)) = 6

f2(h(“alice”)) = 4

Test membership of “alice”

? ? ? f3(h(“alice”)) = 10

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

Test membership of “alice”
All slots fi(h(“alice”)) = 1, and so
membership is confirmed

f1(h(“alice”)) = 6

f2(h(“alice”)) = 4
f3(h(“alice”)) = 10

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

Test membership of “alice”

? ? ?

f1(h(“alice”)) = 6

f2(h(“alice”)) = 4
f3(h(“alice”)) = 12

Bloom Filters
(Bloom 1970)

k uniform hash functions: f1(), …, fk()

A password hashing function: h()

Slot

1

0
2

0
5

0
7

0
11

0
12

0
3

1
4

1
6

1
8

1
9

1
10

1

Test membership of “alice”
Some slot fi(h(“alice”)) = 0, and so
membership is refuted

f1(h(“alice”)) = 6

f2(h(“alice”)) = 4
f3(h(“alice”)) = 12

High-Level Structure

67

UID: alice@gmail.com

password2*

Password:

password3

password4*

password1*

password5

Web Server
Credential Database

1

0



1
0

1

Deploy
monitor
requests

3
encryption

3
pk

pk : homomorphic multiplication (only pk is needed)
pk : public key (or “encryption key”)
sk : private key (or “decryption key”)

5
encryption

5
pk

pk 35 15= decryption

sk
15

Partially Homomorphic Encryption

3
encryption

3
pk

pk : homomorphic multiplication (only pk is needed)
pk : public key (or “encryption key”)
sk : private key (or “decryption key”)

5
encryption

5
pk

pk 35 15= decryption

sk
15

Only pk is needed!

Partially Homomorphic Encryption

Partially Homomorphic Encryption

3
encryption

3
pk

pk : homomorphic multiplication (only pk is needed)
pk : public key (or “encryption key”)
sk : private key (or “decryption key”)

5
encryption

5
pk

pk 35 15= decryption

sk
15

Plaintexts are elements of a prime-order
group G with generator “g” and identity “1”

PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
b

0
3

1
4

1
6

1
8

1
9

1
10

1

𝑏′ = ෍
𝑖
𝑠𝑙𝑜𝑡[𝑖]



PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
3

1
4

1
6

1
8

1
9

1
10

1
b

0

𝑏′

PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
3

1
4

1
6

1
8

1
9

1
10

1
b

0

𝑏′, 𝑓𝑗 𝑗=1

𝑘

PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
3

1
4

1
6

1
8

1
9

1
10

1
b

0

𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘

ElGamal 1985

PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
3

1
4

1
6

1
8

1
9

1
10

1

𝐸𝑝𝑘 𝑔−1 𝐸𝑝𝑘 𝑔

𝑐1 𝑐4

b

0

𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘

PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
3

1
4

1
6

1
8

1
9

1
10

1

𝐸𝑝𝑘 𝑔−1 𝐸𝑝𝑘 𝑔

𝑐8𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐9 𝑐10 𝑐𝑏

b

0



𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘

PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
3

1
4

1
6

1
8

1
9

1
10

1

𝐸𝑝𝑘 𝑔−1 𝐸𝑝𝑘 𝑔

𝑐8𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐9 𝑐10 𝑐𝑏

b

0



𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘, 𝑐𝑖 𝑖=1

𝑏

PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
3

1
4

1
6

1
8

1
9

1
10

1

𝑐8𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐9 𝑐10

𝜃 = 𝑧𝑘𝑝 𝑐𝑖 ∈ 𝐶𝑝𝑘 𝑔 ∪ 𝐶𝑝𝑘 𝑔−1

b

0

𝑐𝑏


𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘, 𝑐𝑖 𝑖=1

𝑏 ,

𝐸𝑝𝑘 𝑔−1 𝐸𝑝𝑘 𝑔

Chaum and Pedersen 1993
Cramer, Damgård, and Schoenmakers 1994

PSO Protocol (Bloom Filter)

Slot

1

0
2

0
5

0
7

0
3

1
4

1
6

1
8

1
9

1
10

1

Target sends this to the monitor.

b

0

𝜃𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘, 𝑐𝑖 𝑖=1

𝑏 ,

PSO Protocol (Bloom Filter)

Monitor receives

𝜃𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘, 𝑐𝑖 𝑖=1

𝑏 ,

PSO Protocol (Bloom Filter)

𝑑0 = 𝑐1 ×𝑝𝑘 ⋯ ×𝑝𝑘 𝑐𝑏 ×𝑝𝑘 𝐸𝑝𝑘 𝑔𝑏−2𝑏′

Monitor stores

Monitor receives

𝑑0 ∈ 𝐶𝑝𝑘 1 if 𝑏′ is truthful

𝜃𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘, 𝑐𝑖 𝑖=1

𝑏 ,

𝑏′, 𝑓𝑗 𝑗=1

𝑘
, 𝑝𝑘, 𝑐𝑖 𝑖=1

𝑏 ,

Monitor Deployment Costs (Infrequent)

Bloom Cuckoo

Request generation
by target

Request validation
by monitor

Request size

Target and monitor each execute on a single 2.5GHz vCPU

PSO Protocol (Bloom Filter)

For login attempt at Monitor with an incorrect password p where ij = fj(h(p)) …

𝑑1 = 𝑐𝑖1
×𝑝𝑘 𝐸𝑝𝑘 𝑔−1 ×𝑝𝑘 ⋯ ×𝑝𝑘 𝑐𝑖𝑘

×𝑝𝑘 𝐸𝑝𝑘 𝑔−1

𝑑1 ∈ 𝐶𝑝𝑘 1 if p is in the Bloom filter

PSO Protocol (Bloom Filter)

Ƹ𝑐0 = $𝑝𝑘 𝑑0 ×𝑝𝑘 $𝑝𝑘 𝑑1

Ƹ𝑐1 = $𝑝𝑘 Ƹ𝑐0 ×𝑝𝑘 𝐸𝑝𝑘 𝑝
Monitor returns Ƹ𝑐0, Ƹ𝑐1

For login attempt at Monitor with an incorrect password p where ij = fj(h(p)) …

𝑑1 = 𝑐𝑖1
×𝑝𝑘 𝐸𝑝𝑘 𝑔−1 ×𝑝𝑘 ⋯ ×𝑝𝑘 𝑐𝑖𝑘

×𝑝𝑘 𝐸𝑝𝑘 𝑔−1

Response Generation Costs (Frequent)

Bloom Cuckoo

Response generation
by monitor

Response processing
by target

Response size

Target and monitor each execute on a single 2.5GHz vCPU

STRONTIUM Credential Stuffing Campaign
(Sep 2019 – Jun 2020)

• Most aggressive attacks averaged 335 login attempts per hour per
account for hours or days at a time

• Over 200 organizations were targeted, seeing login attempts on an
average of 20% of their total accounts

• The number of monitor requests for which induced monitor-response
load could be maintained with one single-core 2.5GHz computer and
no per-account login-attempt limit would have been an average of …
• ~5,373 monitoring requests per monitor, or
• ~26,865 monitoring requests per target

86

To Summarize

87

UID: alice@gmail.com

password2*

Password:

password3

password4*

password1*

password5

Web Server
Credential Database

1

0



1
0

1

Deploy
monitor
requests

But Wait … What if Instead …

88

UID: alice@gmail.com

password2*

Password:

password3

password4*

password1*

password5

Web Server
Credential Database

1

0



1
0

1

Deploy
monitor
requests

But Wait … What if Instead, We Did This?

89

UID: alice@gmail.com

Password:

Web Server
Credential Database

1*

0



1
0

1*

Deploy
monitor
requests

… Whether or Not We Monitor Remotely?

90

UID: alice@gmail.com

Password:

Web Server
Credential Database

1*

0



1
0

1* New login procedure:
• If password is not in the Bloom filter,

then login fails.
• If password is in Bloom filter and all

its indices are marked, then login
succeeds.

• Otherwise, breach alarm!

Bloom-Filter Collisions in Online Attacks

91

UID: alice@gmail.com

Password:

Web Server
Credential Database

1*

0



1
0

1* The Bloom filter includes the password
(hashes) we put there, but also any that
collide on the 1 values.
• Some 1 unmarked  false breach alarm
• All 1’s marked  unauthorized account

access

Bloom-Filter Collisions in Online Attacks

92

UID: alice@gmail.com

Password:

Web Server
Credential Database

1*

0



1
0

1* The Bloom filter includes the password
(hashes) we put there, but also any that
collide on the 1 values.
• Some 1 unmarked  false breach alarm
• All 1’s marked  unauthorized account

access

False Positives (= False Breach Alarms)

• Balancing false positives and false negatives in honeyword selection is
notoriously difficult
• Honeywords too similar to the user-selected password

  attacker who knows that password can trigger false alarms

• Honeywords not similar enough to the user-selected password

  attacker who knows this user’s password elsewhere can avoid true alarm

• Most research has emphasized improving the true alarm rate
• We believe this has been a mistake

93

Reasons to Focus on Reducing False Alarms

1. We only need to catch the attacker at one account—and usually the
attacker wants to harvest many
• So, a low true alarm rate can still be useful

2. Breach alarms are expensive!
• IBM put the average cost of a breach detection and escalation at $1.24 million

94

The Tripwire Study
(DeBlasio, Savage, Voelker, and Snoeren 2017)

95

email.org

user: notadecoy

pwd: pwd8765!

user: notadecoy
em: notadecoy@email.org
pwd: pwd8765!

victim.org

A login here suggests that
victim.org was breached

• Disclosed 18 apparent breaches (and the Tripwire methodology) to
site administrators
• Only 1/3rd responded at all

• Only 1 indicated it would force a password reset

• None notified their users

96

“a major open question ... is how much (probative, but not
particularly illustrative) evidence … is needed to convince
operators to act, such as notifying their users and forcing a
password reset”

The Tripwire Study
(DeBlasio, Savage, Voelker, and Snoeren 2017)

Can We Analytically Quantify the False Alarm Rate?

97

UID: alice@gmail.com

Password:

Web Server
Credential Database

1*

0



1
0

1* If we generate honeywords heuristically,
then we probably cannot.

But if we simply generate the Bloom
filter randomly (while still including the
hash of the user-selected password),
then we can!

Bloom-Filter Collisions in Online Attacks

98

UID: alice@gmail.com

Password:

Web Server
Credential Database

1*

0



1
0

1* The Bloom filter contains any passwords
(hashes) that collide on the 1 values.
• Some 1 unmarked  false breach alarm
• All 1’s marked  unauthorized account

access

Not a problem if the probability of a
collision in the allowed number of online
guessing attempts is sufficiently small.

Estimates of True Detection Probability

• Representative TDP plot on left, as a
function of the fraction n/N of
accounts accessed by the attacker

• Projected from various guessing
attacks and datasets in the literature

• Settings ensure a false detection
once every 3 years, under
conservative attack estimates

99

To Sum Up

• Configure the Bloom filter so that …

100

When a BREACH occurs, the attacker
(with many‡, OFFLINE guesses) finds
numerous passwords in the (marked)
Bloom filter.

When NO BREACH occurs, the
attacker (with few†, ONLINE guesses)
has a low probability of guessing
passwords in the Bloom filter.

† ⪅ 106 guesses ‡ ⪆ 1014 guesses

Florêncio, Herley, and van Oorschot 2014

Coming Full Circle

“Thus the collision-resistant property can in fact be a liability, especially
when the user’s secret is a normal password that is typically chosen
from a relatively small space ... The existence of easy-to-find collisions
… protects a user’s password in that an attacker cannot determine
which is the user’s real password.”

101

Password Hashing Competition (2014-5)
(https://www.password-hashing.net)

102

Has Collision-Resistant Password Hashing for
Credential Storage Done More Harm than Good?

• A preimage is almost certainly the password the user chose!

• This certainty …
• Permits the attacker to confidently end his search

• Facilitates attacking the user’s accounts at other sites

103

Li’s Takeaways

1. Technology transfer from research is a rarity and usually occurs by a
researcher playing a central role in that transfer
• Example: Jerry Saltzer carried the PAKE idea to Kerberos

2. Unless the research is truly transformational, it must be perfectly
packaged for someone else to adopt it

104

My Takeaways

1. Defenders are self-interested, just like attackers are
• Until now, collisionful hashing would have served primarily to reduce the

confidence that a hash preimage will work at another, unbreached site

2. Practical impact of security research is often as much about timing
as it is about the quality of the idea
• Additional context learned over the last 30 years reveals the potential worth

of collisionful hashing

105

	Slide 1: When Research Comes Full Circle: A Missed Opportunity and What to Learn From It
	Slide 2: Who Is This Person?
	Slide 3: Who Is This Person? Dr. Li Gong
	Slide 4: Passwords are Dead (2004)
	Slide 5: Long Live Passwords!
	Slide 6: Multifactor Authentication (MFA)?
	Slide 7: PassKeys!
	Slide 8: Credential Abuse across Sites
	Slide 9: Credential Abuse across Sites
	Slide 10: Credential Abuse across Sites
	Slide 11: Credential Abuse across Sites
	Slide 12: Credential Abuse across Sites
	Slide 13: Credential Abuse across Sites
	Slide 14: Credential Abuse across Sites
	Slide 15: Credential Abuse across Sites
	Slide 16: Credential Abuse across Sites
	Slide 17: Credential Abuse across Sites
	Slide 18: Credential Abuse across Sites
	Slide 19: Credential Abuse across Sites
	Slide 20: Credential Abuse across Sites
	Slide 21: Credential Abuse across Sites
	Slide 22: Credential Abuse across Sites
	Slide 23: Credential Abuse across Sites
	Slide 24: Credential Abuse across Sites
	Slide 25: Credential Abuse across Sites
	Slide 26: Where to Tackle this Problem?
	Slide 27: Where to Tackle this Problem?
	Slide 28: Honeywords (Juels & Rivest 2013)
	Slide 29: Honeywords (Juels & Rivest 2013)
	Slide 30: Honeywords (Juels & Rivest 2013)
	Slide 31: Honeywords (Juels & Rivest 2013)
	Slide 32: Honeywords (Juels & Rivest 2013)
	Slide 33: Honeywords (Juels & Rivest 2013)
	Slide 34: Honeywords (Juels & Rivest 2013)
	Slide 35: Honeywords (Juels & Rivest 2013)
	Slide 36: Honeywords (Juels & Rivest 2013)
	Slide 37: Honeywords (Juels & Rivest 2013)
	Slide 38: Amnesia
	Slide 39: Amnesia
	Slide 40: Amnesia
	Slide 41: Amnesia
	Slide 42: Amnesia
	Slide 43: Amnesia
	Slide 44: Amnesia
	Slide 45: Amnesia
	Slide 46: Amnesia
	Slide 47: Amnesia
	Slide 48: Amnesia
	Slide 49: Stuffing Honeywords to Avoid Detection
	Slide 50: Stuffing Honeywords to Avoid Detection
	Slide 51: Detecting Remotely Stuffed Honeywords
	Slide 52: Detecting Remotely Stuffed Honeywords
	Slide 53: Detecting Remotely Stuffed Honeywords
	Slide 54: Detecting Remotely Stuffed Honeywords
	Slide 55: Detecting Remotely Stuffed Honeywords
	Slide 56: Private Set Operation (PSO) Protocols
	Slide 57: Private Set Operation (PSO) Protocols
	Slide 58: Private Set Operation (PSO) Protocols
	Slide 59: Private Set Operation (PSO) Protocols
	Slide 60: Private Set Operation (PSO) Protocols
	Slide 61: PSO for Password Database Breach Detection
	Slide 62: Bloom Filters (Bloom 1970)
	Slide 63: Bloom Filters (Bloom 1970)
	Slide 64: Bloom Filters (Bloom 1970)
	Slide 65: Bloom Filters (Bloom 1970)
	Slide 66: Bloom Filters (Bloom 1970)
	Slide 67: High-Level Structure
	Slide 68: Partially Homomorphic Encryption
	Slide 69: Partially Homomorphic Encryption
	Slide 70: Partially Homomorphic Encryption
	Slide 71: PSO Protocol (Bloom Filter)
	Slide 72: PSO Protocol (Bloom Filter)
	Slide 73: PSO Protocol (Bloom Filter)
	Slide 74: PSO Protocol (Bloom Filter)
	Slide 75: PSO Protocol (Bloom Filter)
	Slide 76: PSO Protocol (Bloom Filter)
	Slide 77: PSO Protocol (Bloom Filter)
	Slide 78: PSO Protocol (Bloom Filter)
	Slide 79: PSO Protocol (Bloom Filter)
	Slide 80: PSO Protocol (Bloom Filter)
	Slide 81: PSO Protocol (Bloom Filter)
	Slide 82: Monitor Deployment Costs (Infrequent)
	Slide 83: PSO Protocol (Bloom Filter)
	Slide 84: PSO Protocol (Bloom Filter)
	Slide 85: Response Generation Costs (Frequent)
	Slide 86: STRONTIUM Credential Stuffing Campaign (Sep 2019 – Jun 2020)
	Slide 87: To Summarize
	Slide 88: But Wait … What if Instead …
	Slide 89: But Wait … What if Instead, We Did This?
	Slide 90: … Whether or Not We Monitor Remotely?
	Slide 91: Bloom-Filter Collisions in Online Attacks
	Slide 92: Bloom-Filter Collisions in Online Attacks
	Slide 93: False Positives (= False Breach Alarms)
	Slide 94: Reasons to Focus on Reducing False Alarms
	Slide 95: The Tripwire Study (DeBlasio, Savage, Voelker, and Snoeren 2017)
	Slide 96: The Tripwire Study (DeBlasio, Savage, Voelker, and Snoeren 2017)
	Slide 97: Can We Analytically Quantify the False Alarm Rate?
	Slide 98: Bloom-Filter Collisions in Online Attacks
	Slide 99: Estimates of True Detection Probability
	Slide 100: To Sum Up
	Slide 101: Coming Full Circle
	Slide 102: Password Hashing Competition (2014-5) (https://www.password-hashing.net)
	Slide 103: Has Collision-Resistant Password Hashing for Credential Storage Done More Harm than Good?
	Slide 104: Li’s Takeaways
	Slide 105: My Takeaways

