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3https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/

While GraphCast’s training was 
computationally intensive, 
the resulting forecasting model 

is highly efficient…



INCREASE DEMAND, RISING COSTS
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RESEARCH GOAL: RESOURCE EFFICIENT ML



Approach: Design efficient systems which can plan
resource use given structure of ML workloads
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machine learning WORKFLOW 

Data Train 
Model Model



Data access for training on large structured data

Marius [OSDI 2021, VLDB 2021], Marius GNN [Eurosys 2023], 
BagPipe [SOSP 2023]

Data access 

Synchronization

Cluster Scheduling



Optimize communication during distributed training

Blink [MLSys 2020], Accordion [MLSys 2021], KAISA [SC 2021],
Understanding Gradient Compression [MLSys 2022, arxiv 2301.02654]

+

Data access 

Synchronization

Cluster Scheduling



Policies and mechanisms for scheduling on shared clusters

Philly [ATC 2019], Themis [NSDI 2020], Shockwave [NSDI 2023], 
Variability analysis [SC 2022], Mirage [SC 2023], Blox [Eurosys 2024]

Cluster 
Scheduler

Data access 

Synchronization

Cluster Scheduling



THIS TALK

Data access for training on large graph structured data

Optimize communication during distributed training

Policies and mechanisms for scheduling on shared clusters

Data access 

Synchronization

Cluster Scheduling



ML ON GRAPH STRUCTURED DATA
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Social networks Protein structure Knowledge graphsWeather forecast



EXAMPLE: GRAPH NEURAL NETWORKS (GNN)
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Graph Neural Networks: Use NN to capture neighborhood structure
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Example GNNs: GraphSage, Graph Convolution Network, GAT
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EXAMPLE: RECOMMENDATION MODELS
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Clicks Categories Category 
Embeddings

Dense Neural 
Network

Examples: DLRM, DeepFM,  
Wide & Deep



LARGE GRAPHS

Large graphs à Large embedding models 

Example
Embedding tables at Meta
3 Billion vertices, d = 400 
Model size = 3 billion * 400 * 4 = 4.8 TB!
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CHALLENGE: DATA MOVEMENT
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One epoch of GraphSage on Papers100M

Data movement overheads à low GPU util

One iteration of DLRM on Criteo dataset
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MARIUS
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I/O efficient system for learning on large graphs

Key Ideas
 - Pipelined training
 - New disk-based graph ordering
 - Faster with 1 GPU than multi-GPU baselines

Learning Massive Graph Embeddings on a Single Machine 
USENIX OSDI 2021

MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural 
Networks, ACM Eurosys 2023

BAGPIPE

System for training recommendation models

Key Ideas
 - Lookahead-based caching
 - Synchronous consistency guarantee
 - Reduce communication by 60-70%

BagPipe: Accelerating Deep Recommendation Model 
Training, ACM SOSP 2023



MARIUS: TRAINING LOOP

Sample vertices and neighbors

Access embeddings for each vertex

SGD/AdaGrad optimizer
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for i in range(num_batches)
 B = getBatchEdges(i)
   N = sampleNbrs(B)
 E = getEmbeddingParams(B, N)
 G = computeGrad(E, B)
 updateEmbeddingParams(G)



MARIUS: PIPELINED TRAINING
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OUT-OF-MEMORY GRAPH EMBEDDINGS

Prior work in out-of-memory graph algorithms
GraphChi (OSDI 2012)
Mosaic (Eurosys 2017)
… 

Graph Analytics (PageRank)
Iterate over vertices, accessing state (scalar) of incoming edges

Graph Embeddings
Iterate over edges, accessing vertex embeddings (vectors)

20Learning Massive Graph Embeddings on a Single Machine, OSDI’2021
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Disk GPU

Batch Batch

compute: 
loss/gradients

CPU

BatchBatch

Prohibitively expensive to randomly access data on disk!

Disk-Based Training
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Disk-Based Training
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1. Randomly partition graph nodes

2. Load subsets into memory

Goal: Iterate over all examples (i.e., 
        edges) on disk 



PLANNING DATA ACCESS
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Key idea: Maintain a cache of partitions in 
CPU memory

Questions
 Order of partition traversal? 
 How to perform eviction?



Edge bucket orderings
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The order in which edge buckets are 
processed has an impact on IO

Example: After processing edge bucket (3, 2)

Processing (2, 3): Requires no extra swaps 

Processing (2, 4): Requires one swap 

Processing (4, 5): Requires two swaps 𝑐 = 3

𝑝 = 6Θ# Θ$



Edge bucket orderings
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Random Ordering

Hilbert Curve Ordering

~23 swaps

12 swaps 𝑐 = 3

𝑝 = 6

Partitions in Buffer

A Lower Bound

Can never process more than 2c - 1 edge buckets per swap
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BETA Ordering 7 swaps
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Buffer-aware Edge Traversal 
Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ! Θ" Θ# Θ$ Θ% Θ&

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle 
through the rest of the partitions, 
processing their corresponding edge 
buckets

3. Fix a new c - 1 partitions and repeat until 
all edge buckets have been processed
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Buffer-aware Edge Traversal 
Algorithm (BETA)

1. Randomly initialize buffer

2.Use the last spot in the buffer to 
cycle through the rest of the 
partitions, processing their 
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until 
all edge buckets have been processed
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Buffer-aware Edge Traversal 
Algorithm (BETA)

1. Randomly initialize buffer

2.Use the last spot in the buffer to 
cycle through the rest of the 
partitions, processing their 
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until 
all edge buckets have been processed



MARIUS: GPU UTILIZATION
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One epoch on the Freebase86m knowledge graph 
With d=50 embedding size

Freebase-86m 
(338M vertices, 86.1M edges)

Single AWS p3.2xlarge 
(one V100 GPU, 61GB DRAM)

3.8x speedup



31

Graph GNN Model Mem Accuracy Disk Accuracy

FB15k-237 GraphSage 0.2825 0.2369

FB15k-237 GAT 0.2869 0.2076

Freebase86m GraphSage 0.7342 0.6976

Freebase86m GAT 0.7418 0.6860

Problem: disk-based training can produce low quality GNN models

ACCURACY of Disk-Based Training?

Using BETA policy to minimize IO (partition swapping)

Reason: using only on the in-memory subgraph for generating 
examples and neighborhoods leads to biased training
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Disk-Based Training
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Problem: correlated training examples (reduced mini batch randomness) → bad for SGD

All examples focus on the same subset of nodes!
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Challenge: develop policies that lead to fast training and yield high accuracy models

fast training high accuracy

sequential access to disk data random access to graph data

Disk-Based Training: No Free Lunch?
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Correlation Minimizing Edge Traversal (COMET)
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BETA ordering on 
logical partitions 
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Graph GNN Model Mem Accuracy Disk Accuracy (BETA) Disk Accuracy (COMET)

FB15k-237 GraphSage 0.2825 0.2369 0.2736

FB15k-237 GAT 0.2869 0.2076 0.2341

Freebase86m GraphSage 0.7342 0.6976 0.7123

Freebase86m GAT 0.7418 0.6860 0.7053

COMET: flexible two level partitioning and randomized training examples

Disk-Based Training WITH COMET

Improves disk-based accuracy!



System GPUs Epoch (min) Accuracy Cost ($/epoch)

PyG 4 8.01 66.93 1.63

DGL 4 3.07 66.98 0.63

M-GNN (Mem) 1 0.77 66.38 0.16

M-GNN (Disk) 1 0.83 66.03 0.04

Node Classification: 3-Layer GraphSage on OGB-Papers100M

MARIUS EVALUATION

Mixed CPU-GPU training - MariusGNN (Mem): reaches similar accuracy ~4x faster than multi-GPU DGL

Disk-based training - MariusGNN (Disk): 4x cheaper machine yet also ~4x faster than baselines

→ 16x cheaper training cost

→ 4x cheaper training cost



MARIUS: SUMMARY 
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Open source, Python API

Deployed at Apple for training models 
on large knowledge graphs 

https://github.com/marius-team/marius

Saga: A Platform for Continuous Construction and Serving of 
Knowledge at Scale, ACM SIGMOD 2022

https://github.com/marius-team/marius


MARIUS
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I/O efficient system for learning on large graphs

Key Ideas
 - Pipelined training
 - New disk-based graph ordering
 - Faster with 1 GPU than 8-GPU baselines

Learning Massive Graph Embeddings on a Single Machine, 
USENIX OSDI 2021

MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural 
Networks, ACM Eurosys 2023

BAGPIPE

System for training recommendation models

Key Ideas
 - Lookahead-based caching
 - Distributed, disaggregated execution
 - Reduce communication by 60-70%

BagPipe: Accelerating Deep Recommendation Model 
Training, ACM SOSP 2023



What is DIFFERENT?
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Clicks Categories

• Bi-partite graph with edges only between 
events and categories

• Only requires one-hop neighborhood

Can “lookahead” to determine 
embedding access pattern!

à 

1. Prefetch embeddings before batch
2. Cache frequently used embeddings



BAGPIPE DESIGN 
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Oracle 
Cacher

Trainer 1

Trainer 2

Trainer 3

Embedding Storage

Lookahead; 
determine what 

to prefetch, cache

Prefetch 
embeddings and 

store in local cache 



ORACLE CACHER ALGORITHM

Guarantee:  All workers can always access the latest value of the embeddings. 
Maintains synchronous training semantics, no accuracy loss!
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ID 9    ID 3

ID 3    ID 4

Batch 1

Batch 2

Example Lookahead = 2

Batch 1: Prefetch embedding 3 and 9 
            Also cache embedding 3 (as it is used in Batch 2)

Batch 2:  Prefetch embedding 4
             Embedding 3 is already in cache! 
             Update its time-to-live (TTL) to 3 (used in Batch 3)
…

Batch 3

ID 6    ID 3
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At the end of each iteration, need to synchronize the updated embeddings

Trainer-1

Trainer-N

Cache

High Communication overhead 

Logically Replicated and Physically 
partitioned caches to minimize 
overhead.  

More Details in the paper!

DISTRIBUTED CACHE SYNC



BAGPIPE: EVALUATION

44

Time per iteration of DLRM model using 8 p3.2xlarge EC2 instances (1 V100 each node).

Reduce communication overhead to 10% from 75%!



Data access for training on large graph structured data

Optimize communication during distributed training

Policies and mechanisms for scheduling on shared clusters

Data access 

Synchronization

Cluster Scheduling



GPU Cluster SchedulING

GPU Cluster 
Scheduler

Multiplex access to shared GPU cluster for 
contending DL apps

Shared GPU cluster

46



PHILLY STUDY DETAILS

Trace details
75-day period from Oct. 2017 to Dec. 2017
Total of 96,260 jobs over 14 virtual clusters

Logs details
Scheduler logs: job arrival time, num GPUs, finish status
stdout, stderr logs from ML frameworks
Per-minute statistics from Ganglia

Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads – USENIX ATC 2019



STUDY QUESTIONS

(1) What is effect of gang scheduling on queuing?

(2) What is impact of locality on GPU utilization?

(3) How frequent are failures during training ?



How effectively are the GPUs
utilized for DNN training?

Most GPUs are allocated but 
utilization is low!

GPU UTILIZATION

Placement across servers
decreases utilization

More details in our ATC 2019 paper!



DEEP LEARNING SCHEDULERS
Improve Cluster Utilization:
Gandiva (OSDI 2018), AntMan (OSDI 2020), HiveD (OSDI 2020)

Reduce Job-completion Time
Tiresias (NSDI 2019), Optimus (Eurosys 2019)

Optimize Goodput through Elasticity
SLAQ (SoCC 2017), Optimus (Eurosys 2019), Pollux (OSDI 2021), Sia (SOSP 2023)

Fair sharing across users:
Themis (NSDI 2020), Gandivafair AlloX(Eurosys 2020), Gavel (OSDI 2020), 
Shockwave (NSDI 23)



THEMIS: METRIC FOR FAIRNESS

⍴ = Tsh / Tid

– Tsh: finish-time of app in shared cluster 
– Tid: finish-time of app in exclusive 1/N share of cluster
– N: Average contention during app lifetime

Sharing Incentive: for all apps, ⍴ <= 1

Used to evaluate fairness of many schedulers including Gavel, Pollux, Sia etc. 
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Server 1 Server 2

Themis: Mechanism

…

Objective:  min (max ⍴)

⍴1 ⍴2> > ⍴3 > ⍴N

Interface: Get ⍴ estimates from all jobs 
Red GPUs 
become 
available

1. Filter 1 – f jobs with max ⍴ values
2. Allocate to one or more of 1 – f jobs for lease duration using 

Partial Allocation Auctions

1 – f f
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DYNAMIC ADAPTATION IN ML JOBS: GNS

Gradient Noise Scaling (GNS)

Adaptively double batch size based on 

gradient noise

 

Small Batch Size (16), 

Large Batch Size (4096)

Batch size 16 à 32 à … à 4096

KungFu (OSDI 2020)



CHALLENGE: INACCURATE ESTIMATES

…

Themis Objective: min (max ⍴)

⍴1 ⍴2> > ⍴3 > ⍴N

Interface: Get finish time fairness (⍴) estimates from all apps 
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Dynamism à 
Inaccurate 
Estimates



CHALLENGE: FILTERING ON PAST ALLOCATIONS

…

Themis objective – min (max ⍴)

⍴1 ⍴2> > ⍴3 > ⍴N

1. Filter 1 – f apps with worst ⍴ values
2. Allocate to one or more of 1 – f apps for next round using partial auctions

1 – f f

55

Filter only 
looks at past 
allocations



SHOCKWAVE: DYNAMIC MARKETS
Goal: Scheduling policy that accounts for the past and future utilities

Market theory: Provable guarantees for efficiency, fairness.

Static market: Every training job has a known, time-invariant utility U(x)

l Utility U(x): map allocated GPU-time to training throughput for a job

Volatile Fisher Market (VFM) in Shockwave

l Operate at discrete time intervals (rounds)

l Every training job has a time-variant utility Ut(x) for each round (t)

l Solve for allocation that leads to market equilibrium



32-GPU Cluster in TACC, Gavel trace

END-TO-END COMPARISONS



32-GPU Cluster in TACC, Gavel trace

END-TO-END COMPARISONS

0 10000 20000 30000 40000
Makespan (Seconds) 0 5000 10000 15000

Average JCT (Seconds)

0 10 20 30
Unfair Fraction (%)

Reduces Makespan by ~1.3x, Unfair fraction by ~2x, maintains JCT



Data access 

Synchronization

Cluster Scheduling

PUTTING IT ALL TOGETHER

BETA and COMET orderings for GNN training

 Marius: https://github.com/marius-team/marius/

Lookahead algorithm for recommendation models

 Bagpipe: https://github.com/uw-mad-dash/bagpipe

Market-theory based fair scheduling

 Shockwave: https://github.com/uw-mad-dash/shockwave 
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Tran, Hongyi Wang

Collaborators: Theo Rekatsinas, Aditya Akella, Amar Phanishayee, Matt 
Sinclair, Zhao Zhang
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