
Resource Efficient Large Scale ML:
Plan Before You Run

Shivaram Venkataraman
University of Wisconsin, Madison

2

3https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/

While GraphCast’s training was
computationally intensive,
the resulting forecasting model

is highly efficient…

INCREASE DEMAND, RISING COSTS

4

RESEARCH GOAL: RESOURCE EFFICIENT ML

Approach: Design efficient systems which can plan
resource use given structure of ML workloads

6

machine learning WORKFLOW

Data Train
Model Model

Data access for training on large structured data

Marius [OSDI 2021, VLDB 2021], Marius GNN [Eurosys 2023],
BagPipe [SOSP 2023]

Data access

Synchronization

Cluster Scheduling

Optimize communication during distributed training

Blink [MLSys 2020], Accordion [MLSys 2021], KAISA [SC 2021],
Understanding Gradient Compression [MLSys 2022, arxiv 2301.02654]

+

Data access

Synchronization

Cluster Scheduling

Policies and mechanisms for scheduling on shared clusters

Philly [ATC 2019], Themis [NSDI 2020], Shockwave [NSDI 2023],
Variability analysis [SC 2022], Mirage [SC 2023], Blox [Eurosys 2024]

Cluster
Scheduler

Data access

Synchronization

Cluster Scheduling

THIS TALK

Data access for training on large graph structured data

Optimize communication during distributed training

Policies and mechanisms for scheduling on shared clusters

Data access

Synchronization

Cluster Scheduling

ML ON GRAPH STRUCTURED DATA

12

Social networks Protein structure Knowledge graphsWeather forecast

EXAMPLE: GRAPH NEURAL NETWORKS (GNN)

13

Graph Neural Networks: Use NN to capture neighborhood structure

Illinois
Wisconsin

Madison

Borders

Capital of

ℎ!"

ℎ!"

ℎ!"

Example GNNs: GraphSage, Graph Convolution Network, GAT

0

|V|

d

ℎ#$ = 𝐴𝐺𝐺(ℎ#" , {ℎ%", ℎ!" })

Vertex
Embeddings

EXAMPLE: RECOMMENDATION MODELS

14

0

N

d

Clicks Categories Category
Embeddings

Dense Neural
Network

Examples: DLRM, DeepFM,
Wide & Deep

LARGE GRAPHS

Large graphs à Large embedding models

Example
Embedding tables at Meta
3 Billion vertices, d = 400
Model size = 3 billion * 400 * 4 = 4.8 TB!

15

0

|V|

d

CHALLENGE: DATA MOVEMENT

16

One epoch of GraphSage on Papers100M

Data movement overheads à low GPU util

One iteration of DLRM on Criteo dataset

0

20

40

60

80

100

120

140

160

DLRM Training: TorchRec

Embedding Sync

GetEmb

Backward+MLP Sync

Forward

MARIUS

17

I/O efficient system for learning on large graphs

Key Ideas
 - Pipelined training
 - New disk-based graph ordering
 - Faster with 1 GPU than multi-GPU baselines

Learning Massive Graph Embeddings on a Single Machine
USENIX OSDI 2021

MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural
Networks, ACM Eurosys 2023

BAGPIPE

System for training recommendation models

Key Ideas
 - Lookahead-based caching
 - Synchronous consistency guarantee
 - Reduce communication by 60-70%

BagPipe: Accelerating Deep Recommendation Model
Training, ACM SOSP 2023

MARIUS: TRAINING LOOP

Sample vertices and neighbors

Access embeddings for each vertex

SGD/AdaGrad optimizer

18

for i in range(num_batches)
 B = getBatchEdges(i)
 N = sampleNbrs(B)
 E = getEmbeddingParams(B, N)
 G = computeGrad(E, B)
 updateEmbeddingParams(G)

MARIUS: PIPELINED TRAINING

19

OUT-OF-MEMORY GRAPH EMBEDDINGS

Prior work in out-of-memory graph algorithms
GraphChi (OSDI 2012)
Mosaic (Eurosys 2017)
…

Graph Analytics (PageRank)
Iterate over vertices, accessing state (scalar) of incoming edges

Graph Embeddings
Iterate over edges, accessing vertex embeddings (vectors)

20Learning Massive Graph Embeddings on a Single Machine, OSDI’2021

21

Disk GPU

Batch Batch

compute:
loss/gradients

CPU

BatchBatch

Prohibitively expensive to randomly access data on disk!

Disk-Based Training

|V|

Graph
d0

𝐻!

Disk-Based Training

3

2

1

7
8

9

5 6

4

Disk

𝐻!A B

C

A

B

C

𝐻!

A

B

3

2

1 5 6

4

𝐻!

A

C

3

2

1

7
8

9

𝐻!

B

C
7

8

9

5 6

4

Training
Examples

1 2

2 3

2 4

4 6

7 9

8 9

3 7

5 9

6 9

CPU

1. Randomly partition graph nodes

2. Load subsets into memory

Goal: Iterate over all examples (i.e.,
 edges) on disk

PLANNING DATA ACCESS

23

Key idea: Maintain a cache of partitions in
CPU memory

Questions
 Order of partition traversal?
 How to perform eviction?

Edge bucket orderings
0

1

2

3

4

5

1 2 3 4 5

So
ur

ce
 P

ar
tit

io
n

Destination Partition

0

Partitions on disk

Partitions in Buffer

Θ! Θ" Θ# Θ$ Θ% Θ&

The order in which edge buckets are
processed has an impact on IO

Example: After processing edge bucket (3, 2)

Processing (2, 3): Requires no extra swaps

Processing (2, 4): Requires one swap

Processing (4, 5): Requires two swaps 𝑐 = 3

𝑝 = 6Θ# Θ$

Edge bucket orderings

So
ur

ce
 P

ar
tit

io
n

Destination Partition

0

1

2

3

4

5

Partitions on disk Θ! Θ" Θ# Θ$ Θ% Θ&

Random Ordering

Hilbert Curve Ordering

~23 swaps

12 swaps 𝑐 = 3

𝑝 = 6

Partitions in Buffer

A Lower Bound

Can never process more than 2c - 1 edge buckets per swap

⌈
𝑝# − 𝑐#

2𝑐 − 1 ⌉ = ⌈
6# − 3#

2 ∗ 3 − 1⌉ = 6

BETA Ordering 7 swaps

6 swaps

1 2 3 4 50

Lower bound

Buffer-aware Edge Traversal
Algorithm (BETA)

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ! Θ" Θ# Θ$ Θ% Θ&

1. Randomly initialize buffer

2. Use the last spot in the buffer to cycle
through the rest of the partitions,
processing their corresponding edge
buckets

3. Fix a new c - 1 partitions and repeat until
all edge buckets have been processed

𝑐 = 3

𝑝 = 6

0

1

2

3

4

5

1 2 3 4 50

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ! Θ" Θ# Θ$ Θ% Θ&

Θ! Θ" Θ#

0 swaps*

* Not counting initialized buffer, as with the previous orderings

𝑐 = 3

𝑝 = 6

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal
Algorithm (BETA)

1. Randomly initialize buffer

2.Use the last spot in the buffer to
cycle through the rest of the
partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until
all edge buckets have been processed

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ! Θ" Θ# Θ$ Θ% Θ&

Θ! Θ" Θ#

Θ$1 swap

𝑐 = 3

𝑝 = 60 swaps*

* Not counting initialized buffer, as with the previous orderings

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal
Algorithm (BETA)

1. Randomly initialize buffer

2.Use the last spot in the buffer to
cycle through the rest of the
partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until
all edge buckets have been processed

So
ur

ce
 P

ar
tit

io
n

Destination Partition

Partitions on disk

Partitions in Buffer

Θ! Θ" Θ# Θ$ Θ% Θ&

Θ! Θ" Θ$

2 swaps

𝑐 = 3

𝑝 = 6
1 swap

Θ%

0

1

2

3

4

5

1 2 3 4 50

Buffer-aware Edge Traversal
Algorithm (BETA)

1. Randomly initialize buffer

2.Use the last spot in the buffer to
cycle through the rest of the
partitions, processing their
corresponding edge buckets

3. Fix a new c - 1 partitions and repeat until
all edge buckets have been processed

MARIUS: GPU UTILIZATION

30

One epoch on the Freebase86m knowledge graph
With d=50 embedding size

Freebase-86m
(338M vertices, 86.1M edges)

Single AWS p3.2xlarge
(one V100 GPU, 61GB DRAM)

3.8x speedup

31

Graph GNN Model Mem Accuracy Disk Accuracy

FB15k-237 GraphSage 0.2825 0.2369

FB15k-237 GAT 0.2869 0.2076

Freebase86m GraphSage 0.7342 0.6976

Freebase86m GAT 0.7418 0.6860

Problem: disk-based training can produce low quality GNN models

ACCURACY of Disk-Based Training?

Using BETA policy to minimize IO (partition swapping)

Reason: using only on the in-memory subgraph for generating
examples and neighborhoods leads to biased training

32

Disk-Based Training

5 9

6 9

Problem: correlated training examples (reduced mini batch randomness) → bad for SGD

All examples focus on the same subset of nodes!

Training
ExamplesCPU

3

2

1

7
8

9

5 6

4

Disk

𝐻!A B

C

A

B

C

𝐻!

B

C
7

8

9

5 6

4

Challenge: develop policies that lead to fast training and yield high accuracy models

fast training high accuracy

sequential access to disk data random access to graph data

Disk-Based Training: No Free Lunch?

|V|

Edge List 𝐻!
d0

Disk CPU

Edge List 𝐻! d0

Correlation Minimizing Edge Traversal (COMET)

𝑝 physical partitions𝑝& edge buckets 1. virtually group into 𝑙 logical partitions
Shuffle physical
partitions in a

logical partition

BETA ordering on
logical partitions

COMET
Training
Examples

1 2

2 3

2 4

4 6

7 9

8 9

3 7

5 9

6 9

4 6

2. Randomize training
examples used to
create mini batches

Deferred processing of
edge
to increase randomness

4 6

𝐻!

A

B

3

2

1 5 6

4

𝐻!

A

C

3

2

1

7
8

9

𝐻!

B

C
7

8

9

5 6

4

CPU

36

Graph GNN Model Mem Accuracy Disk Accuracy (BETA) Disk Accuracy (COMET)

FB15k-237 GraphSage 0.2825 0.2369 0.2736

FB15k-237 GAT 0.2869 0.2076 0.2341

Freebase86m GraphSage 0.7342 0.6976 0.7123

Freebase86m GAT 0.7418 0.6860 0.7053

COMET: flexible two level partitioning and randomized training examples

Disk-Based Training WITH COMET

Improves disk-based accuracy!

System GPUs Epoch (min) Accuracy Cost ($/epoch)

PyG 4 8.01 66.93 1.63

DGL 4 3.07 66.98 0.63

M-GNN (Mem) 1 0.77 66.38 0.16

M-GNN (Disk) 1 0.83 66.03 0.04

Node Classification: 3-Layer GraphSage on OGB-Papers100M

MARIUS EVALUATION

Mixed CPU-GPU training - MariusGNN (Mem): reaches similar accuracy ~4x faster than multi-GPU DGL

Disk-based training - MariusGNN (Disk): 4x cheaper machine yet also ~4x faster than baselines

→ 16x cheaper training cost

→ 4x cheaper training cost

MARIUS: SUMMARY

38

Open source, Python API

Deployed at Apple for training models
on large knowledge graphs

https://github.com/marius-team/marius

Saga: A Platform for Continuous Construction and Serving of
Knowledge at Scale, ACM SIGMOD 2022

https://github.com/marius-team/marius

MARIUS

39

I/O efficient system for learning on large graphs

Key Ideas
 - Pipelined training
 - New disk-based graph ordering
 - Faster with 1 GPU than 8-GPU baselines

Learning Massive Graph Embeddings on a Single Machine,
USENIX OSDI 2021

MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural
Networks, ACM Eurosys 2023

BAGPIPE

System for training recommendation models

Key Ideas
 - Lookahead-based caching
 - Distributed, disaggregated execution
 - Reduce communication by 60-70%

BagPipe: Accelerating Deep Recommendation Model
Training, ACM SOSP 2023

What is DIFFERENT?

40

Clicks Categories

• Bi-partite graph with edges only between
events and categories

• Only requires one-hop neighborhood

Can “lookahead” to determine
embedding access pattern!

à

1. Prefetch embeddings before batch
2. Cache frequently used embeddings

BAGPIPE DESIGN

41

Oracle
Cacher

Trainer 1

Trainer 2

Trainer 3

Embedding Storage

Lookahead;
determine what

to prefetch, cache

Prefetch
embeddings and

store in local cache

ORACLE CACHER ALGORITHM

Guarantee: All workers can always access the latest value of the embeddings.
Maintains synchronous training semantics, no accuracy loss!

42

ID 9 ID 3

ID 3 ID 4

Batch 1

Batch 2

Example Lookahead = 2

Batch 1: Prefetch embedding 3 and 9
 Also cache embedding 3 (as it is used in Batch 2)

Batch 2: Prefetch embedding 4
 Embedding 3 is already in cache!
 Update its time-to-live (TTL) to 3 (used in Batch 3)
…

Batch 3

ID 6 ID 3

43

At the end of each iteration, need to synchronize the updated embeddings

Trainer-1

Trainer-N

Cache

High Communication overhead

Logically Replicated and Physically
partitioned caches to minimize
overhead.

More Details in the paper!

DISTRIBUTED CACHE SYNC

BAGPIPE: EVALUATION

44

Time per iteration of DLRM model using 8 p3.2xlarge EC2 instances (1 V100 each node).

Reduce communication overhead to 10% from 75%!

Data access for training on large graph structured data

Optimize communication during distributed training

Policies and mechanisms for scheduling on shared clusters

Data access

Synchronization

Cluster Scheduling

GPU Cluster SchedulING

GPU Cluster
Scheduler

Multiplex access to shared GPU cluster for
contending DL apps

Shared GPU cluster

46

PHILLY STUDY DETAILS

Trace details
75-day period from Oct. 2017 to Dec. 2017
Total of 96,260 jobs over 14 virtual clusters

Logs details
Scheduler logs: job arrival time, num GPUs, finish status
stdout, stderr logs from ML frameworks
Per-minute statistics from Ganglia

Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads – USENIX ATC 2019

STUDY QUESTIONS

(1) What is effect of gang scheduling on queuing?

(2) What is impact of locality on GPU utilization?

(3) How frequent are failures during training ?

How effectively are the GPUs
utilized for DNN training?

Most GPUs are allocated but
utilization is low!

GPU UTILIZATION

Placement across servers
decreases utilization

More details in our ATC 2019 paper!

DEEP LEARNING SCHEDULERS
Improve Cluster Utilization:
Gandiva (OSDI 2018), AntMan (OSDI 2020), HiveD (OSDI 2020)

Reduce Job-completion Time
Tiresias (NSDI 2019), Optimus (Eurosys 2019)

Optimize Goodput through Elasticity
SLAQ (SoCC 2017), Optimus (Eurosys 2019), Pollux (OSDI 2021), Sia (SOSP 2023)

Fair sharing across users:
Themis (NSDI 2020), Gandivafair AlloX(Eurosys 2020), Gavel (OSDI 2020),
Shockwave (NSDI 23)

THEMIS: METRIC FOR FAIRNESS

⍴ = Tsh / Tid

– Tsh: finish-time of app in shared cluster
– Tid: finish-time of app in exclusive 1/N share of cluster
– N: Average contention during app lifetime

Sharing Incentive: for all apps, ⍴ <= 1

Used to evaluate fairness of many schedulers including Gavel, Pollux, Sia etc.

51

Server 1 Server 2

Themis: Mechanism

…

Objective: min (max ⍴)

⍴1 ⍴2> > ⍴3 > ⍴N

Interface: Get ⍴ estimates from all jobs
Red GPUs
become
available

1. Filter 1 – f jobs with max ⍴ values
2. Allocate to one or more of 1 – f jobs for lease duration using

Partial Allocation Auctions

1 – f f

52

DYNAMIC ADAPTATION IN ML JOBS: GNS

Gradient Noise Scaling (GNS)

Adaptively double batch size based on

gradient noise

Small Batch Size (16),

Large Batch Size (4096)

Batch size 16 à 32 à … à 4096

KungFu (OSDI 2020)

CHALLENGE: INACCURATE ESTIMATES

…

Themis Objective: min (max ⍴)

⍴1 ⍴2> > ⍴3 > ⍴N

Interface: Get finish time fairness (⍴) estimates from all apps

54

Dynamism à
Inaccurate
Estimates

CHALLENGE: FILTERING ON PAST ALLOCATIONS

…

Themis objective – min (max ⍴)

⍴1 ⍴2> > ⍴3 > ⍴N

1. Filter 1 – f apps with worst ⍴ values
2. Allocate to one or more of 1 – f apps for next round using partial auctions

1 – f f

55

Filter only
looks at past
allocations

SHOCKWAVE: DYNAMIC MARKETS
Goal: Scheduling policy that accounts for the past and future utilities

Market theory: Provable guarantees for efficiency, fairness.

Static market: Every training job has a known, time-invariant utility U(x)

l Utility U(x): map allocated GPU-time to training throughput for a job

Volatile Fisher Market (VFM) in Shockwave

l Operate at discrete time intervals (rounds)

l Every training job has a time-variant utility Ut(x) for each round (t)

l Solve for allocation that leads to market equilibrium

32-GPU Cluster in TACC, Gavel trace

END-TO-END COMPARISONS

32-GPU Cluster in TACC, Gavel trace

END-TO-END COMPARISONS

0 10000 20000 30000 40000
Makespan (Seconds) 0 5000 10000 15000

Average JCT (Seconds)

0 10 20 30
Unfair Fraction (%)

Reduces Makespan by ~1.3x, Unfair fraction by ~2x, maintains JCT

Data access

Synchronization

Cluster Scheduling

PUTTING IT ALL TOGETHER

BETA and COMET orderings for GNN training

 Marius: https://github.com/marius-team/marius/

Lookahead algorithm for recommendation models

 Bagpipe: https://github.com/uw-mad-dash/bagpipe

Market-theory based fair scheduling

 Shockwave: https://github.com/uw-mad-dash/shockwave

THANK YOU!

Students: Jason Mohoney, Roger Waleffe, Saurabh Agarwal, Kshitij Mahajan,
Arjun Singhvi, Pengfei Zheng, Rui Pan, Rutwik Jain, Prasoon Sinha, Brandon
Tran, Hongyi Wang

Collaborators: Theo Rekatsinas, Aditya Akella, Amar Phanishayee, Matt
Sinclair, Zhao Zhang

60

Shivaram Venkataraman
shivaram@cs.wisc.edu

