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Agenda

- Resiliency and Efficiency of Complex Enterprise Systems
Outage Forecasting
Causal Graph for microservices

Root cause and remediation recommendation using structured and unstructured data

= Selected Recent publications — Glimpse into team’s ongoing work
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About me

Principal Research Scientist at Adobe Research

PhD in Econometrics, 2008, University of Wisconsin-Madison

Current Research

= Research topics — Causal Inference, Time Series Analysis

Domain — Marketing Attribution, Automated Insights, System Reliability and Efficiency

Enterprise System Research Agenda
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Adobe Research, Bangalore

Hire in a3 wide variety of fields

Summer internship program - UG and PhD

University Collaborations

University Gift Funding
= Adobe Research Gift Funding
= Marketing Research Award
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ML for System Reliability and Efficiency
* Generative Model Efficiency
* NL25QL
User Modelling for Marketing Decisions
Multi-modal Content Generation

Document Understanding
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Prevent disruptions from becoming outages

A The Register

Photostopped: Adobe Cloud evaporates in mass outage.
Hope none of you are on a deadline, eh?

Photostopped: Adobe Cloud evaporates in mass outage. Hope none of you |
are On a. deadllne, eh : YOUTUBE - Published December 14, 2020 9:43am EST

3 weeks ago Google lost $1.7M in ad revenue

during YouTube outage, expert says

YouTube and other Google services, such as Gmail, suffered outage Monday morning

By James Rogers |FOXBusiness | o o o 6 @ Markets

Search stocks, ETFs and more

h‘ Adobe 6



Performance guarantees are a promise to customers

[ Uptime ] [ Latency ] [Data Loss]

I\ Adobe



Performance guarantees are a promise to customers

Availability — Downtime/Year

° 99% ~ 35 days
999% ~ 8 Hours

[ Uptime J 99.99% ~ 52 minutes

99.999% ~ 5 minutes

h‘ Adobe



Microservices "‘

> Distributed System Architecture

> Complex dependencies among components

MONOLITH MICROSERVICES

> Large-scale and complex architecture OO OO
© 060

> Scalable and flexible development

> Managed by individual self-contained teams

Imabé Bdakse: hitps://codeit.us/blog/monolithic-vs-microservices-architecture



https://codeit.us/blog/monolithic-vs-microservices-architecture

Microservice Health Diagnosis

» Vulnherability is common in microservices

> Goal: Lower time to detection - Mean Time to Detection (MTTD)

> Goal: Lower time to resolution

> Diagnosis - Structural understanding of the system

> Resolution - How to bring the system back-up

h‘ Adobe



Can outages be forecasted?

o )

SUDDEN OUTAGES - NO OUTAGES THAT ARE NOT ‘SLOWLY" EVOLVING ISSUES -
CAPTURED IN DATA - NOT LIKELY MAY BE

I\ Adobe
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Root Cause Observable Outage
Event Impact
3:54 AM 4:10 AM 4:18 AM _ . 5:08 AM 5:12 AM 5:34 AM o 6:15 AM >
Faulty SQL QoS Alerts CSO Root cause Fault fixed,
hot patch Sl Impacts fred  declared identified CSO resolved
SQL Errors Latency
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Outage-Watch: Early Prediction of Outages using Extreme Event

Regularizer
Shubham Agarwal Sarthak Chakraborty” Shaddy Garg
Adobe Research University of Illinois Adobe
Bangalore, India Urbana-Champaign Bangalore, India
shagarw@adobe.com Champaign, USA shadgarg@adobe.com
sc134@illinois.edu
Sumit Bisht’ Chahat Jain® Ashritha Gonuguntla®
Amazon Traceable.ai Cisco
Bangalore, India Bangalore, India Bangalore, India
bishts002@gmail.com chahatjain99@gmail.com ashrithag.0907 @gmail.com

Shiv Kumar Saini
Adobe Research

Bangalore, India
shsaini@adobe.com

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

h‘ Adobe



Existing Work

= Anomaly Detection
= Supervised and Un-supervised

- Disk failure prediction

= Qutage Forecasting
= Unsupervised — very few outages
= Extreme event prediction

= Extreme Value Loss - "Modeling extreme events in time series prediction," Ding et al, KDD 2019

= Outages are not well-defined

= Thresholds might not be known

h‘ Adobe



Solution

Outage - A Quality-of-service metric (QoS) crossing user-defined threshold

= QoS Metrics: Eg. Latency, Errors, Utilization, Queue Length

Outage Forecasting

P(QoS; > Threshold | Info,)

Model the forecast distribution of each QoS metric as Mixture of Normals

= Use Mixture of Density Network (MDN) Loss

Extreme event regularizer from Ding et al, KDD 2019

h‘ Adobe



Metric Selection

(A

Preprocessing @

Label generation

(C]

Input multivariate
metric time series

h‘ Adobe
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Predict for time t + ¥y

Mg@os MDN networks,
one for each QoS metric

Distribution of QoS metrics

0/1

Outage/Not Outage MooscClassifiers,

one for each QoS metric

2




Results

Model Precision ' Recall Reduction in MTTD
Model Prediction Look-Ahead (y) Outage A | Outage B | Outage C

5 mins | 10 mins | 15 mins | 30 mins Naive Bayes 1/14 1/3 24% - -

Naive Bayes 0.593 0.592 0.592 0.582 Random Forest 1/11 1/3 0% - -

Random Forest 0.873 0.868 0.867 0.824 Gradient Boost 2/12 2/3 0% 76% -
Gradient Boost 0.870 0.854 0.828 0.822 BiLSTM + Classifier 2/10 2/3 - 56% 26%
BiLSTM+Classifier | 0.909 | 0.914 0.930 0.927 BiLSTM + MDN 3/10 3/3 43% 76% 26%
Outage-Watch 0.981 | 0.982 | 0.977 | 0.975 Outage-Watch (BCE) 3/9 3/3 54% 76% 27%
Outage-Watch (EVL) 3/8 3/3 40% 80% 26%

h‘ Adobe

Synthetic Data

Actual Deployment
« 2 months & 3 outages
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CauslL: Causal Graph for Instance Level
Microservice Data

Sarthak Chakraborty!, Shaddy Garg?, Shubham Agarwall, Ayush Chauhan3, Shiv Sainil

1Adobe Research India, 2Adobe India, SThe University of Texas at Austin
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Of=5c Ok

Paper Link

Proceedings of The Web Conference 2023 (WWW’23)

Code Link




Microservice Deployment

Service Call Graph

Send Edit

A

Multiple instances/pods of the same microservice are spawned
Unique instances are numerous, transient and ever-changing

Auto-scaler & Load-balancer
Instance Component

For service S in Adobe, 1117 unigque instances spawned over 3

@ months (avg. life: ~6 hours)

[ A ) Latency,

Workload, Errors,
’ ’ ’ Throughput,

W/ Utilization

h-

Latency, Workload,

@ é@% é%‘ Errors, Throughput

21
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Preliminary Approaches

Aggregate the metrics [ Avg-fGES ]

» For each metric, aggregate the metric values across all instances for each time-step;
use the aggregated value for causal structure estimation (fGES)

CPU Utilization at Time Intervals

Averaged Instance-Level

2 3000 ‘ 8
2 2 3000
s <
2 3 2
. L
B 3TAY i =
g T I

1 2 3 4 5 6 0 5 10 15 20 o 0 5 10 15 20 P
Timestamp ID CPU Utilization (%) CPU Utilization (%)

----- CPU(%)1 =-@=-CPU(%)2 =-@=-CPU(%)3 el Avg CPU (%) (a) (b)

from certain instances non-linearity not preserved

[ Aggregating dilutes the effect ] [ Changes the relationship among metrics; ]
22
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Dependencies in Microservice

CauslL, a causal graph estimation methodology that considers metric
variations within instances of a service:

Can effectively model microservice deployment scenario
Implicitly models a load-balancer and an auto-scaler
Uses generic domain knowledge to improve efficiency

Scalable even on addition of a new microservice

NS S S

h‘ Adobe 23
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Causal Assumptions

Caller Service Callee Service

Workload

CPU Utilization

: Memory Utilization @
, w

Latency
W& B @
5 golden signals (domain expertise) Intra-Instance Inter-Service

24
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Why new technique is needed?

Service 4 Service 3 Service A Service B Service 4 Service 3

Aggregating Metric Proposed Approach
Ground Truth Vallcs P PP

25
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CauslL : Proposed Approach

Design Motivation
ﬁ Different instances of a service are independent
and identical to each other conditioned on the
o \\ K \ load received at the service
>f
Pod \\ ,’I “\ ,
aY
Pod / \:‘: \\\
POd // \®

UjWVj 1 U |Wy

26



t=1

=2

t=3

0N

CauslL : Proposed Approach

Metrics of all Metrics of all
Instances of S Instances of S,

) )

\

Instance1 Instance2 Instance 3

Service B
Service 4

num_i;st(A)

Relevant metrics that can form a causal structure

1 Golden Metrics of all instances of S

O Workload for all instances of caller
0 Latency and Error for all instances of callee microservices

27



t=1

=2

t=3

CauslL : Proposed Approach

Metrics of all Metrics of all
Instances of S Instances of S
\ \

\

Instance1 Instance2 Instance 3

Service B
Service 4

num_i;st(A)

Aggregated
Metrics of all
Instances of S,

Instance1 Instance2 Instance 3

{_A_\

num_l)}(zst(A)

«— Proxy column

Proxy Node

0N
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CauslL : Proposed Approach

Metrics of all Metrics of all
Instances of S Instances of S

) )

Instance1 Instance2 Instance 3

\

t=1

=2

t=3

Service B
Service 4

num_i;st(A)

Aggregated Metrics
of all Instances of S,

Instance1 Instance2 Instance3 | \

t=1 I -
t=2
t=3 1

Service B

Service 4

num_l)}(zst(A)

0N

Data flattened over
all instances

Instance 1 - -

t=1 Instance 2

Instance 3

=2 {Instance1 - -
e

Instance 1
=3
Instance 2

O Instances are identical

and independent

29
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CauslL : Proposed Approach

Metrics of all

Metrics of all
Instances of S

)

\

Instances of S

Instance1 Instance2 Instance 3

\

t=1

=2

t=3

Service B
Service 4

num_i;st(A)

Data flattened over
all instances

Aggregated Metrics
of all Instances of S,

Instance1 Instance2 Instance 3 {_A_\ instance ! -

t=1 — Instance 2 -

= I - Instance 3 -
=2 i t=2 {Instance1 - -
= instance 1 | |

= {nstance 2
. SevieeB ﬂ
A Causal Structure
[ Estimation Algorithm ]

30
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CauslL : Proposed Approach

Service 4 Service B Service 4  Service 3 Service 4 Service 3

Causal structure estimation (fGES) of one service at a time and then merge

O Estimate a function f between the parent and the child metrics
0 Choose the relationship that has minimum BIC; Form the edge

Jit

BIC_based score function Lscore(xijt,P(xijt)) S ZZlog (L(fi(P(xijt)”xijt;P(xijt))) + pk log n; J

0N
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Domain Knowledge

» Captures metric semantics and generic microservice architecture knowledge
» Create a prohibited edge list, edges that are not possible in a microservice architecture

» Reduces time complexity of causal estimation

Intra-Service Inter-Service
.. . 1. No edges across services not connected through
1. No other metric within the same service call graph
affects workload o 2. Prohibit all edges between connected services
2. Latency does not affect resource utilization except (a) workload in the direction of call graph,
(b) latency and error in the opposite direction

\_ AN

32
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Implementation Details

Datasets Baselines Metrics

4 , ) 4 ) 4 )
Synthetic & Avg-fGES & CauslL Graph Comparison Metrics

Semi-Synthetic

Polynomial regression for f . .
10/20/40 services with varying degree SHD, Precisions & Recall

- J - J - J

33



Structural Hamming Distance (SHD)

Evaluation Results
Impact of Domain Knowledge

10 services, 50 metrics

=
3
«

=
1%
o

-
N
o

1<
S

~
a

w1
o

N

o

Structural Hamming Distance (SHD)

i = Without DK
W With DK
100 4
5 4

250 A

u
t=}

Linear Poly2 Poly3
Versions of CausIL

20 services, 100 metrics

Linear Poly2 Poly3
Versions of CauslIL

Log(Time for Completion)

Log(Time for Completion)

10 services, 50 metrics

-

1 —@— Without DK

~>¢ With DK

Linear

10

Poly2 Poly3
Versions of CauslL

20 services, 100 metrics

—&— Without DK
-~ With DK

|l

Linear Poly2 Poly3
Versions of CauslIL

with domain knowledge

\

More than 3.5x improvement in
SHD of estimated causal graph

J

70x improvement in
computation time

-

J

A

Redundant edges are not considered for comparison

while estimating causal graph

34



Evaluation Results

# Services, | Fioddl | Dsyn | gysemi=syn
flctmics \ | SHD AdiP AdjR Adjf AHP AHR AHF |SHD AdjP AdjR Adjf AHP AHR AHF
B aselin e Com pari son \ ECI | 53 0772 0841 0805 0704 0.909 0793 | 53 0762 0873 0814 069 0.906 0.783
| Avg-fGES-Lin | 54 0794 0854 0822 0686 0.864 0765 | 54 0793 0851 082 068 0857 0.759
10,50 | Avg-fGES-Poly2 | 48 081 0861 0834 0723 0892 0799 | 50 0807 0845 0825 0713 0.883 0.789
| Avg-fGES-Poly3 | 46  0.837 0839 0.837 0747 0.893 0814 | 46 0837 0838 0836 0745 089 0.811
| CausIL-Lin | 51 0788 0878 0.83 0.695 0.882 0777 | 53 0788 0.874 0.829 0.684 0.868 0.765
| CausIL-Poly2 | 38 0.889 0852 0869 0795 0895 0842 | 36 0892 0.877 0883 0795 0892 0.84
CaUSI L perfo rms better tha n | CausIL-Poly3 | 32 0909 0.878 0.891 0.823 0905 0.862| 35 0.909 0875 089 0797 0877 0.835
Avg_fG ES a nd FCI on a" the | FCI | 105 0773 085 081 0702 0909 0792 | 105 0772 0856 0811 0699 0.906 0.79
| Avg-fGES-Lin | 103 0814 0832 082 0706 0867 0778 | 104 0813 0827 0818 0709 0872 0.782
datasets 20,100 | Avg-fGES-Poly2 | 95 0823 0872 0847 0716 087 0786 | 93 0826 088 0855 0713 0864 0.781
J | Avg-fGES-Poly3 | 88  0.845 0867 0857 074 0.876 0802 | 85 0846 0871 0.836 0782 0869 0.798
| CausIL-Lin | 95 0812 0856 0832 0728 0.897 0803 | 100 0.809 0836 082 0722 0892 0.797
| CausIL-Poly2 | 66 0908 0.895 0.901 0.801 0.883 084 | 68 0907 0.892 0.899 0795 0.876 0.833
| CausIL-Poly3 | 67 0913 0881 0.89 0.807 0.884 0.844 | 72 0911 0859 0.884 0.804 0.882 0.841
) \ FCI | 204 0792 0814 0803 0719 0907 0.803 | 206 0781 0802 0791 0706 0.904 0.793
Polynomial Estimation Fu nction | Avg-fGES-Lin | 203 0837 078 0807 0742 0.88 0.808 | 206 0.837 0778 0.806 0.737 088  0.802
. 40,200 | Avg-fGES-Poly2 | 197 0.853 0782 0815 0749 0879 0.809 | 200 0852 0779 0.813 0746 0.876 0.806
perfOrmS better sSince generatEd | Avg-fGES-Poly3 | 204 0.862 0741 0795 0763 0.885 082 | 203 0862 0746 0799 0759 0.882 0.816
. . CausIL-Lin | 186 0835 0811 0824 0759 0.897 0827 | 188 0833 0811 0822 0755 0905 0.823
data IS p0|yn0m|a| CausIL-Polyz | 152 0919 0.828 0.871 0.825 0.899 0.86 | 155 092 0817 0.864 0809 0.879 0.843
J | CausIL-Poly3 | 160 0.922 0783 0846 0.83 0.909 0.863 | 162 0922 0784 0847 0821 089 0.854

Table 1: Comparison of CauslL against the baselines for all types of datasets.
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Evaluation Results
Real Data

» Data collected for a span of 2 months with 5 min granularity
» Ground Truth Causal Graph based on the causal assumptions

Model | SHD AdjP AdjR Adjf AHP AHR AHF

FCI | 59 0756 0796 0775 0697 0922 0.794
Avg-fGES-Lin | 52 0829 0858 0843 0692 0835 0.757
Avg-fGES-Poly2 | 53 0823 0823 0823 0708 086 0.777
Avg-fGES-Poly3 | 51 0.852 0814 0833 0722 0848 078
CausIL-Lin | 50 0807 0814 081 0737 0913 0816
CausIL-Poly2 | 40 0818 0876 0.846 0.785 0.96 0.864
CausIL-Poly3 | 46 0824 0867 0845 0739 0898 0.811

A

Login
Microservice

Microservice Microservice
8 1

Monolith

Microservice \
6
5 <

Microservice
7

Microservice
2
Microservice
3

A
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Conclusion

Causal Structure Estimation for microservices when multiple instances of a microservice

are deployed
o Instances are dynamic and transient in nature

Domain Knowledge improves the performance as well as computation complexity
o Domain Knowledge generic to any microservice architecture
o  Written as general rules

Estimates causal relationship one service at a time
o Scales linearly on adding a new service
o Each service takes 12-13s with standard deviation of 1.09s on average
37



ESRQO: Experience Assisted Service Reliability
against Outages

Sarthak Chakraborty'*, Shubham Agarwal?, Shaddy Garg3,
Abhimanyu Sethia¥*, Udit Narayan PandeyY*, Videh Aggarwal¥*, Shiv Saini

T University of Ilinois Urbana-Champaign, USA, YAdobe Research, India,
S8Adobe, India, YIndian Institute of Technology Kanpur, India

sc134 @illinois.edu, shagarw @adobe.com, shadgarg@adobe.com, abhimanyusethial 2@ gmail.com,
udit.pusp@gmail.com, videhlaggarwal @gmail.com, shsaini@adobe.com

ASE 23, September 11-15, 2023, Luxembourg
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Metric Alerts
e Real-time

* Difficult to interpret

Causal graph

Knowledge Graph

Incident Reports
o Stale but

 Semantically rich

39



Graph Construction Phase

o Filter +
) - T>| causal Graph Construction

Knowledge Graph Construction
— | Summarization | > +
Outage Clustering

> [Cluster Predictiorﬂ _—

I
| —>
]

Alerts

Outage Cluster
Predictor

—

1 Inference Phase

06 |—o.2| 08 |0.9 |—o.1 |—o.9 —0.7

BERT Embeddings

v

Causal graph
Traversal

Combined

L. Cluster Rank
Cluster Prediction | —»

TRttt

Root Cause 1
Root Cause 2
Root Cause 3

+

Remediation 1
Remediation 2
Remediation 3
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Metric IS GCN Clust % Gain
Root Cause Rouge-1 0.207 0.176  0.242 27.2%

Rouge-L.  0.197 0.165  0.227 26.4%
Remediation Rouge-1 0.157 0.162 0.219 31.3%

Rouge-L.  0.143  0.147  0.205 41.4%

% Gain over two baselines

41
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Research Areas

e ML for System Reliability and Efficiency
* User Modelling for Marketing Decisions

. Document Understanding

*  Multi-modal Content Generation

N

-~

ML System & User Modeling

~

e ML Training and Inference Optimization
e Query, Compute, Storage Optimization
e Approximate Computing

e Causal Inference

&Active Learning

Anomaly Detection
Forecasting
Segmentation

Data Summarization

/
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NEURAL INFORMATION
PROCESSING SYSTEMS
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CONFERENCE <

SIGIR

Special Interest Group
on Information Retrieval

NL2SQL

/
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International Conference
On Machine Learning
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Selected Papers: Causal Understanding of Complex Systems

Service 4. Service 3

Service 4 Service B Service 4 Serice 3

Service B
Service 3 e Serwce‘:Q
Service 4

num_inst(A) num_inst(A)

© (d)

Figure 5: (a) shows an example estimated causal graph for
individual services A and B where B calls A. (b) shows the
merged causal graph with error and workload merged. Figure
(c) and (d) shows the parent metrics for latency of instance j of
A. In (c) latency of B depends on metrics of B and latencies of
allinstances of A. In (d) an aggregated latency node composed
Jfrom the latencies of all instances of A is constructed, acting
as a latent node.

CauslL: Causal Graph for Instance Level
Microservice Data. WWW 2023: 2905-2915

Root Cause Discovery (RCD) Algorithm

1. Hierarchical: Split the data into small subsets and find candidate targets.
2. Localized: Only find the interventional targets.

Theorem: Given access to a perfect conditional independence oracle, and under the causal sufficiency,
and the extended faithfulness assumptions RCD returns the true root cause variables.

® OO0
7 o

‘9
OO0 OO

v

o
o s |

@
@ &
\_Rep Merge —Leveli + 1/ ®
@ |
&

Root Causes

Figure 3. RCD (left) follows the divide-and-conquer approach. It first splits the data and finds the interventional
targets from each subset. In the second phase, it combines the candidate root causes of all the subsets and
performs the same steps recursively. The example (right) shows an execution of RCD with 11 nodes. The orange
nodes are potential root causes that are carriec to the next level for further processing and the red node (xg) is the
eventual root cause.

Root Cause Analysis of Failures in Microservices
through Causal Discovery. NeurlPS 2022
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Selected Papers: Outage Prediction and Diagnosis

Trained Mgos distribution forecast
Models

A

H

M Dimensions

Metric
Preprocessing >

Metric

Encoder

Distribution
Learner

LA
! Outage 8 Probability
[ [ prediction | [ Computation
SR 6} o ©

Figure 5: Tasks performed during inference time to predict
potential outages from the predicted distribution

Outage-Watch: Early prediction of outages
using extreme event regularizer. ESEC/FSE 2023

'
1

: Filt

' III er +

; _ ™ (o

1

1

Graph Construction Phase

.
1
1
!

'
BERT Embeddings {} Root Cause 1
1 Root Cause 2
' Root Cause 3
. Alerts Symptom Similarity :—v
' * i +
1 iati
) L Remediation 1
. e = ! Remediation 2
1 iation 3
g =) Combined
: Outage Reports <1 Cluster Rank

Outage Cluster
Predictor

Fig. 4: Figure shows a demonstration of the path based
inference approach, where Alert 1 is fired during an outage.
The inference method reaches two root causes Root Cause 1
(RC1) and Root Cause 2 (RC2) from Alert 1. There is only
one 2-length path to RC2 from Alert 1, while there are two
paths to RC1, a 2-length path and a 4-length path. Hence, the
score for RCI is 0.75 while the score for RC2 is 0.5.

ESRO: Experience Assisted System Reliability
against Outages. ASE 2023
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Selected Papers: Approximations and ML in Big-Data Processing

Query

SELECT Month, AVG(Value)
FROM OrdersData

Selectivity Estimator

Count

WHERE Browser=“Chrome” AND
0OS = “i0S” AND Age = “Senior”

GROUP BY Month

Average

Sum

.

Q e ;

Predicate-Aware Samples
Generator

Conditional Generative Model Based Predicate-
Aware Query Approximation. AAAI 2022: 8259-8266

EDA USING FULL DATA EDA USING SAMPLES
SELECT * FROM dataset WHERE delay > SELECT * FROM dataset WHERE delay > ; EDA SEQUENCE
(SELECT AVG(delay) FROM dataset) a (SELECT AVG(delay) FROM dataset) '\ EXAMPLES STATE SPACE
dey-ot_month orgin destination | carrler | delay dey-of_month erigin | desination | carer | delay - =5 TOPIC MODELS ONGOING EDA STATE SAMPLING
AN X [sen W% {* = T [an ox [ W% UsmgA R o e iy . STR:TEGIES
AA K AA P ot ample A | 50k rows
N |LAX [Fsm "~ IE3 — . WN[Ax [Fsm A @ 3 I Sample B | 1k rows
oL o st Sample C | 5k rows
1 ocr [sic [lax wN |87 1 oot [sic [uax wN |87 . 2 Jon SamEeD] 10K rows
SELECT month, AVG(delay) FROM dataset SELECT month, AVG(delay) FROM dataset d
GROUP BY month Q2 GROUP BY month
50 30 1 L
S Using !
10 ' STATE SPACE
o lula III al (R2] DIlIl-IlIIlII sy ENCODER
zaxxxzd oy >0 zoxxxzsg © 8 29
£283£%33358¢8%8 £Bgg§333588¢¢8
SELECT * FROM dataset WHERE month SELECT day_of_week , AVG(delay) FROM 2 st
- JUN Q3 dataset GROUP BY day_of_week . P
oot s [ asition [ % iAction = Use Sample C
— p— Using |
1 JUN_ |oRD [sEA wN 25 1
3 N ‘lcuv 7K A a5 { R3 J 0 I I | I | I I Sample C ‘: at 0000
LAX | FSM AA 95 0 " XX
A |ow oL AS AA DL HA B6 WN NK UA L °99°99 policy Network 7! 6
SELECT origin, AVG(delay) FROM dataset SELECT carrier, AVG(delay) FROM dataset KRR P
WHERE month = JUNE GROUP BY origin GROUP BY carrier o'g'go
100 | 60
T 40 Using
50 |
& A I I " 2 ‘Bﬁ;l 20 1 I I SampleD |
- — o '
5I3aYEezEEY o .
EF mv<awmc—vu 113'4567 Reward for

Intent Type = Topic Y

I Intent Divergence |

Rt approximated EDA

Reinforced Approximate Exploratory Data
Analysis. AAAI 2023: 7660-7669
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Selected Papers: Storage Cost Optimization

TABLE I: Cost and latency numbers for Azure [8]. IV. OPTASSIGN: OPTIMIZING OVERALL COSTS VI. DATAPART: ACCESS AWARE DATA PARTITIONING
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TABLE II: % cost benefits for data across 4 customers.

Ac

Total Size (PB) % Cost Benefit

: o 2 mos | 6 mos 04 @ ,
B Customer A 0.56 1059 | 616 P2 @ 02 @

Customer B 0.45 8 53.72 P2
Customer C 0.053 11.58 | 83.69 P4 P4
= Customer D 0.085 9.93 49.6

cesses from Dec 1 - Feb 1

% of acc

Tradeoff between Storage Cost and Latency Cost

e Towards Optimizing Storage Costs

&

o , i i (b) % accesses vs months since ° l‘ “. O n t h e C I 0 u d ¢ | C D E 2023
(a) % accesses vs dataset index file was created \ BT . L
Fig. 1: Enterprise Data access patterns e ‘\\.'_" ~ e

Fig. 5: Left: Latency Cost vs Storage Cost, Right: Total Cost vs
Latency Time. Different tradeoff curves correspond to different
compression predictors used.
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Selected Papers: Federated Learning

Insight #2: Drift-aware dO= B M) + (1 - By) (AD>V)

Adaptive Optimizer \ )
AP C Iy (o el A .
— 17 Leec(we” —wg ) higher  lower higher

| m™ — Bim 4+ (1 - g1)AD
| v B2V 4 (1 - B2)(A™)?

v(_r—l)

v

B3j +

I J 2 / t(v" - d(r)
Vj € n/[sgre(v) ]
| P Tamr T, < A
: A Bagd{ ™V + (11— Bay) (A7) = of); higher
| Vj € [n] ngter drift adaptation
. (r) (ie. convergence to the

| 5V ptr—D +7 m
L 5 4 Wae M ] new concept)
r-"=-"=—=-==== 'I rm==== I
: o : | : 0.45 |

;'g B\ aZ | 1,040 | Figure:
|goa { \ ||g0,35 | Accuracy
|.~§U7 J ‘l,‘ / === Lu(:m o redves | curves with
12 \ [/ e | 1B o || | IMCTEMENS
I Z0s6 \ )‘( —a— FedDrift I 2 —e— FedDrift I drift after

> / AdapFA 0.20 AdapFedAvg d State
I nE \ / Oracle |> Oracle stea y '

/ —— Flash I 0.15 —— Flash I

| 200 400 500 800 1000 1200 1400 | I 0 500 1000 1500 2000 2500 3000 3500 4000 |
L — — — —MumberofRounds __ L —  __NumberofRounds _ __ _

Theorem 4.2 (Convergence of FLASH). Let
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Flash: Concept Drift Adaptation in
Federated Learning. ICML 2023
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Selected Papers: User Modeling

Joint Optimization of User Segmentation and Channel Delivery
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Segmentation under Budget Constraint, CIKIM 2023
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Constrained Image Generation

Prompt: A pod of dolphins leaping out
of the water in an ocean with a ship on  Prompt: A frog and a crown
the background

Stable Diffusion

Multi-concept Iterative
Generation

Generation [1]

1. Aishwarya Agarwal, Srikrishna Karanam, Joseph KJ, Apoorv Saxena, Koustava Goswami, and Balaji Vasan Srinivasan, A-STAR: Test-time
Attention Segregation anad Retention for Text-to-image Synthesis, ICCV 2023



Cinemagraph Generation

L e
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Réﬁned%ﬁeﬁéw GeneratedFramesw/ReﬂnedDense Flow ClOthln g Anlmatlon [2]
Fluid Animation [1]

1. Aniruddha Mahapatra and Kuldeep Kulkarni. "Controllable animation of fluid elements in still images." CVPR 2022.
2. Hugo Bertiche, Niloy J. Mitra, Kuldeep Kulkarni, Chun-Hao Paul Huang, Tuanfeng Y. Wang, Meysam Madadi, Sergio Escalera and Duygu Ceylan,
"Blowing in the Wind: CycleNet for Human Cinemagraphs from Still Images”, CVPR 2023
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Multimodal Representation & Grounding

Vi) [V(0)] .....[vyy(x)] [Haircut] J

Legend: .Highly Related DLcss Related DUmclalcd

| ~ .'/ ‘N\.\
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~ S/
Original & Masked Image Encoding Visual Difference Attention Difference Attention Loss

Multimodal
Representation [1,2]

Reference |

"have the
dog wear

a sweater"

Target

Image
Encoder
Vision-
Language

Transformer

Encoder

Proposed
Attention

Multimodal
Grounding [3]

1. Aishwarya Agarwal, Srikrishna Karanam, and Balaji Vasan Srinivasan, Learning with Difference Attention for Visually Grounded Self-supervised

Representations, arXiv 2023, under review
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LLMs for Document Understanding & Consumption
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Feature Extraction

Document Segmentation

[1]

GENERAL DISCUSSION

MARKETS

(a) Input Document

Document Navigation [2]

Table of Contents

Previous  Next

Item 1 - Business
Item 1A — Risk Factors

Item 1B — Unresolved Staff
Comments

Iltem 2 - Properties
Iltem 3 — Legal Proceedings
Item 4 — Mine Safety Disclosures

(b) Default Table of
Contents

Reading As: Business Partners ~

Default
Read the document normally.

Employees
Read about procedures, compensations and share ownership

Business Partners
Read about business overview, risks, and analysis.

Investors and Lenders
Read about business overview, legal and financial proceeding

Financial Bodies
Read about business overview, and properties and share capi

Advisory and Regulatory Firms
Read about business overview and risks, legal and financial p

(c) DynamicToC Personas

Previous  Next

Table of Contents ‘

Item 2 - Properties

Item 3 - Legal Proceedings

Item 4 — Mine Safety Disclosures
Item 5 — Market

STOCK BUYBACK PROGRAM

How do companies buy back their own
stock? Do they have an expiration date?

Item 6 — Consolidated Financial
Data

Item 7 - Management Discussion
and Analucic Af Cinanaial

(d) DynamicToC Table
of Contents

Inderjeet Nair, Aparna Garimells, Balaji Vasan Srinivasan, Natwar Modani, Niyati Chhaya, Srikrishna Karanam, Sumit Shekhar; A Neural CRF-
based Hierarchical Approach for Linear Text Segmentation; EACL 2023
Maheshwari, Himanshu, Nethraa Sivakumar, Shelly Jain, Tanvi Karandikar, Vinay Aggarwal, Navita Goyal, and Sumit Shekhar. "DYNAMICTOC:
Persona-based Table of Contents for Consumption of Long Documents." NAACL 2022,



Document Transformations

Stage |

Data Selection
from D,

d

Pretrained
-base-cased

Stage Il

MLM on selected sentences S,

MLM on Selected
and task-level
sentences (S, +T¢)

(a)

"2l MM tuned BERT ,
T

Generate sentence vector

i) Pretrained
bert-base-cased
(ii) Pretrained
bert-base-cased
Pretrained
(U bert-bose-cases MU

(onT,)

(onT,)

(iv) Pretrained
bert-base-cased by MLM tuned BERT | Sup 3w

(onTo)

iy

4

MLM tuned BERT
e ——
(on L)

il Fine-tuned BERT
%

B MM tuned BERT

(onL)

) Fine-tuned BERT
vk V/

MLM tuned BERT

for domaln-level
(D) and task-level corpus (T;)

T, vector

D, vector

Select top-k sentences
_ from D, based on
4 labels

(h)

v predicts for sentences
of D,

Stage Il

Fine tuning on
labeled data L,

Fine-tuned BERT

Select top-k sentences
from D.based on cosine
similarity b/w D and T,

>

1 4

Se

Se

| Elaborate video

How to make s Chocolate Cake?

li '

(A) Multimodal

retrieval

Inputs
1. Recipe document

2. User Preferences

(D) Stitch visuals
together to generate
the final video

Information coverage
computations

Modality choice

Module to capture
temporal aspects

l (B) Reranking of assets |

(C) Sequence
generation

In another large bowl, whisk together
the eggs, water (or coffee), milk, oil,
and vanilla extract.

Cross Modal

Transformation

[WACV 2023]




