AC-3 August 2011 QE

AC-3 page 1 of 2

Warning: Graphical solutions are not acceptable! Only analytical solutions will be graded!

1. (20 pts) Consider the optimization problem,

maximize
$$-x_1^2 + x_1 - x_2 - x_1 x_2$$

subject to
$$x_1 \ge 0, x_2 \ge 0.$$

(i) (10 pts) Characterize feasible directions at the point

$$oldsymbol{x}^* = \left[egin{array}{c} rac{1}{2} \ 0 \end{array}
ight].$$

- (ii) (10 pts) Write down the second-order necessary condition for x^* . Does the point x^* satisfy this condition?
- 2. (20 pts) Use the simplex method to solve the problem,

maximize
$$x_1 + x_2$$

subject to
$$x_1 - x_2 \le 2$$

$$x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0.$$

Write in Exam Book Only

3. (20 pts) Solve the following linear program,

maximize
$$-x_1 - 3x_2 + 4x_3$$

subject to $x_1 + 2x_2 - x_3 = 5$
 $2x_1 + 3x_2 - x_3 = 6$
 x_1 free, $x_2 \ge 0$, $x_3 < 0$.

4. (20 pts) Consider the following model of a discrete-time system,

$$x(k+1) = 2x(k) + u(k), \quad x(0) = 0, \quad 0 \le k \le 2$$

Use the Lagrange multiplier approach to calculate the optimal control sequence

$${u(0), u(1), u(2)}$$

that transfers the initial state x(0) to x(3) = 7 while minimizing the performance index

$$J = \frac{1}{2} \sum_{k=0}^{2} u(k)^2$$

5. (20 pts) Consider the following optimization problem,

optimize
$$(x_1 - 2)^2 + (x_2 - 1)^2$$
 subject to
$$x_2 - x_1^2 \ge 0$$

$$2 - x_1 - x_2 \ge 0$$

$$x_1 \ge 0.$$

The point $x^* = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ satisfies the KKT conditions.

- (i) (10 pts) Does x^* satisfy the FONC for minimum or maximum? What are the KKT multipliers?
- (ii) (10 pts) Does x^* satisfy the SOSC? Carefully justify your answer.

Write in Exam Book Only