Question 1 (30 points): Draw the transistor-level schematic for the implementation of a full adder circuit using (i) static CMOS, (ii) NORA dynamic CMOS, and (iii) complementary pass transistor logic (CPL). (10 points for each logic style)

Question 2 (30 points): Consider an inverter of minimum size (with an input capacitance of C_m) driving a load C_v which is `F` times as large as C_m. The PMOS transistor is `A` times larger than the NMOS transistor. You introduce another inverter (`X` times larger than the first inverter) between the minimum-sized inverter and the load C_v. Determine the value of X to minimize the delay of the chain. When does it make sense to introduce this inverter? Clearly state all your assumptions.

Question 3 (40 points): Consider the following inverting Schmitt Trigger circuit, with the supply voltage (+V) being equal to 5V, $R_1 = 15K\Omega$, $R_2 = 30K\Omega$, and $RFB = 25 K\Omega$.

(a) **(20 points)** Compute the high and low trip thresholds of this Schmitt Trigger circuit.
(b) **(20 points)** Draw the voltage waveform at the output if the following waveform is input to the above Schmitt Trigger circuit.