When an English algorithm description is requested, you may provide pseudo-code as well, for clarity; however, your English description must be complete. Pseudo-code may be ignored at our discretion. We recommend saving at least 30 minutes for the final two questions if you seek a full score.

1. (25 points) For each of the following code fragments, give a \(\Theta \) bound describing the asymptotic number of basic steps executed in terms of positive integer \(n \). Justify your answer carefully. For the second fragment, state the value computed.

 (a) \[
 \text{sum} = 1; \\
 \text{for } i = n^2 \text{ downto } 1 \\
 \quad \text{for } j = 1 \text{ to } i \\
 \quad \quad \text{sum} = \text{sum} + 1; \\
 \]

 (b) \[
 \text{foo}(x, n) \\
 \quad \text{if } (n == 0) \text{ return } 1; \\
 \quad \text{if } (n == 1) \text{ return } x; \\
 \quad \text{if } (n \% 2 == 0) \\
 \quad \quad \text{then return } \text{foo}(x \times x, n/2); \\
 \quad \text{else return } x \times \text{foo}(x \times x, n/2); \\
 \]
 Suppose the call \(\text{foo}(5, n) \) is executed. Here, \(\% \) denotes the modulo operation, and integer division discarding the remainder is represented by \(/ \). For your asymptotic bound, consider \(n \) an exact power of 2.

2. (25 points) Given as input an array \(A[1..n] \) of integers, describe in English a worst-case quadratic algorithm to produce a matrix \(B[1..n, 1..n] \) of integers such that \(B[i,j] \) equals the sum of the integers \(A[i..j] \) in the array \(A \) indexed between \(i \) and \(j \), with \(B[i,j] \) equal to 0 when \(i > j \). Argue briefly that your algorithm is correct and quadratic in the worst case.

3. (20 points) Carefully define the binary relation “polynomially reduces” \((\preceq_p) \) and prove that this relation is transitive. Include careful description of the domain of this relation.

4. (15 points) Consider the Bellman-Ford algorithm, run on a graph of \(n \) vertices with real edge weights, with no negative cycles. After \(n - 1 - k \) iterations of the algorithm’s main loop, for some positive integer \(k \), what is the largest number of vertices that can still have incorrect shortest-path distance bounds? For half credit, justify your answer with convincing example graphs and an explanation. For full credit, justify your answer with a careful proof.

5. (15 points) Show that the problem \(\text{HITTINGSET} \) is \(\mathcal{NP} \)-hard given that the problem \(\text{VERTEXCOVER} \) is \(\mathcal{NP} \)-hard. Five of the points for crisply elaborating what must be exhibited.

\(\text{VERTEXCOVER} \) asks whether there is a size \(k \) vertex cover of a graph \(G \). A vertex cover is a subset of vertices such that every edge starts or ends at a vertex in the subset.

\(\text{HITTINGSET} \) considers a sequence of sets \(S_1, ..., S_n \) and a positive integer \(x \) and seeks a subset \(H \) of the domain \(\bigcup_i S_i \) such that for every \(i \), \(H \cap S_i \) is non-empty.