(a) (10pts) Explain the terms Fermi energy E_F and Fermi temperature T_F.

Now consider a 2D semiconductor with parabolic energy bands and electron effective mass m^*.

(b) (10pts) Find the number of electronic states in an area A with wavenumber k lower than some absolute value k_0. Make sure to consider spin.

(c) (20 pts) The total number of electrons in this 2D semiconductor is given by

$$N = \int_0^\infty \frac{g(E) dE}{e^{(E-\mu)/k_BT} + 1}$$

where μ is the chemical potential. Find the density of states per unit energy $g(E)$.

(d) (20 pts) Find the chemical potential μ as a function of the number of electrons per unit area $n \equiv N/A$. A variable substitution may be useful here (e.g. $x = e^{(E-\mu)/k_BT} + 1$ or similar).

(e) (20 pts) Based on the chemical potential in part (d), find the Fermi energy E_F.

(f) (20 pts) How does the dependence of the density of states $g(E)$ on energy in 2D parabolic bands (part b) compare with that in 1D and 3D systems? State the expected dependence (m_1 and m_3) such that

$$g_{1D}(E) \propto (E - E_0)^{m_1}$$

and

$$g_{3D}(E) \propto (E - E_0)^{m_3}$$

Explain your reasoning.