1. [25 points] In the circuit below, find the transfer function \(H(s) = \frac{v_{out}}{v_{in}} \), and plot \(|H(s)|\) vs. \(\omega \). In the plot, mark the value of \(|H(s)|\) when \(\omega = 1/(RC) \).
 Assume:
 - The op-amp is ideal.
 - \(R1 = R2 = R \)
 - \(C1 = C2 = C \)

2. [25 points] In the circuit below, find the small signal output voltage \(v_{out} \).
 Assume:
 - The op-amp is ideal.
 - The DC current source \(I_{Blas} \) is ideal.
 - The DC voltage sources \(V_{Blas1} \) and \(V_{Blas2} \) are ideal.
 - \(M1 \) is biased in saturation region.
 - The output resistance of \(M1 \), \(r_o = 100 k\Omega \)
 - The transconductance of \(M1 \), \(g_m = 20 mA/V \).
 - \(M1 \) has no parasitic capacitance \((Cgs = Cgd = Csb = Cdb = 0) \).

3. [25 points] In the circuit below, find the input impedance \(Z_{in} \) seen by the voltage signal source \(v_{in} \).
 Assume:
 - The current source \(I_{Blas} \) is ideal.
 - \(M1 \) is biased in saturation region.
 - \(M1 \) has no parasitic capacitance \((Cgs = Cgd = Csb = Cdb = 0) \).
 - The output resistance of \(M1 \), \(r_o = \infty \).

4. [25 points] In the circuit below, find the small signal output voltage \(v_{out+} \).
 Assume:
 - The circuit is fully symmetric
 - \(M1 \) and \(M2 \) are biased in saturation region.
 - The current source is ideal.
 - \(M1 \) and \(M2 \) have no parasitic capacitance \((Cgs = Cgd = Csb = Cdb = 0) \).
 - For both \(M1 \) and \(M2 \), \(r_o = \infty \).
 - For both \(M1 \) and \(M2 \), the transconductance \(g_m = 30 mA/V \).
 - \(R1 = 1 k\Omega \)
 - \(R2 = 2 k\Omega \)
 - \(C1 = 10 \) pF