1. (40 pts) Compare the energy of the following configurations. The permittivity ε is ε_0 everywhere.

 a. In (A), a point charge Q is suspended a distance d above a grounded plane. In (B), two point charges, $+Q$ and $-Q$, are separated by a distance $2d$. How does the energy W_A of configuration (A) compare to that of configuration (B), W_B? Specifically, find W_A/W_B. Explain your reasoning.

 ![Diagram of configurations A and B]

 b. In these configurations, the two spheres are of radius a, and each contains a total charge of Q. In (A), the volume charge density ρ_v is uniform in the region $R < a$, and zero everywhere else. In (B), the only charge is a surface charge, of density ρ_s, uniformly distributed on the surface of the sphere. (i) Compare and contrast the electric field in the regions $R < a$ and $R > a$ for these two charge configurations. [Note: No equations are necessary for your response to this part of the question.] (ii) Explain qualitatively the difference between the energy W_A of configuration (A) and the energy W_B of configuration (B). (iii) Find W_A/W_B.

2. (30 pts) A parallel plate capacitor of spacing d, is charged to a potential V_0. The dimension of the conductors is $a \times b$, where b is the dimension into the page. A dielectric slab, of permittivity $\varepsilon = 2\varepsilon_0$, is partially inserted into the region between the plates, as shown. Neglecting edge effects, approximate the force F felt by the dielectric. Is the force pulling the dielectric into the space (as shown), or expelling the dielectric (opposite the direction shown). Explain your answer. [Hint: Recall that the mechanical work done in moving an object against a force F is $-\int F \cdot d\ell$. Except for consideration of signs, the inverse of this relation can be used to find the force F.]

![Diagram of capacitor with dielectric]
3. (30 pts) Consider a charged region of infinite length in the x and y dimensions. The displacement field \mathbf{D} has only a D_z component, which is $D_z(z) = A + Bz$ for $0 < z < d$, $D_z(z) = C$ for $z > d$, and $D_z(z) = -D_z(z)$. A, B, and C are known constants. See the plot to the right.

a. Determine the volume charge density ρ_V for the four regions $0 < z < d$, $z > d$, $z < -d$, and $-d < z < 0$.

b. Determine the surface charge density ρ_s at $z = d$.

c. Determine the total charge Q contained within a volume V which has surface area ΔS on the faces normal to the z-axis, and extends over $-L < z < L$, where $L > d$, in the z-direction.
Maxwell's Equations:

\[\nabla \cdot \mathbf{D} = \rho_v \]
\[\nabla \cdot \mathbf{B} = 0 \]
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \]
\[\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \]

Poynting's Theorem:

\[\nabla \cdot (E \times H) = -\frac{\partial}{\partial t} \left(\frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H} \right) - \frac{\partial}{\partial t} \left(\frac{1}{2} \varepsilon \mathbf{E} \cdot \mathbf{E} \right) - \mathbf{J} \cdot \mathbf{E} \]

Potentially useful vector algebra

\[\nabla \mathbf{A} = \hat{x} \left(\frac{\partial A_x}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{y} \left(\frac{\partial A_y}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left(\frac{\partial A_z}{\partial x} - \frac{\partial A_x}{\partial y} \right) \]
\[\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \]
\[\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \]

Potentially useful integral identities

\[\int \frac{dx}{x} = \ln x \]
\[\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left(x + \sqrt{x^2 + a^2} \right) \]
\[\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} \]
\[\int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{x}{a^2 \sqrt{x^2 + a^2}} \]
\[\int \sin^2 x \, dx = \frac{x}{2} - \frac{1}{4} \sin 2x \]
\[\int \sin^3 x \, dx = \frac{\cos^3 x}{3} - \cos x \]
\[\int \sinh^2 x \, dx = \frac{1}{2} [-x - \sinh x \cosh x] \]
\[\int \frac{xdx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 + a^2} \]
\[\int \frac{xdx}{x^2 + a^2} = \frac{1}{2} \ln \left(x^2 + a^2 \right) \]
\[\int \left(x^2 + a^2 \right)^{-1/2} \, dx = \frac{1}{\sqrt{x^2 + a^2}} \]
\[\int \cos^2 x \, dx = \frac{x}{2} + \frac{1}{4} \sin 2x \]
\[\int \cos^3 x \, dx = -\frac{\sin^3 x}{3} + \sin x \]
\[\int \cosh^2 x \, dx = \frac{1}{2} [x + \sinh x \cosh x] \]