1. (20 pts) Find the ellipse
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \]
that comes as close as possible to the three data points:
\[(x_1, y_1) = (1, 0), \quad (x_2, y_2) = (0, \sqrt{2}), \quad (x_3, y_3) = (1, 1). \]

2. (20 pts) Use the simplex method to solve the following linear program,

\[
\begin{align*}
\text{maximize} & \quad x_1 + 2x_2 \\
\text{subject to} & \quad -2x_1 + x_2 \leq 2 \\
& \quad x_1 - x_2 \geq -3 \\
& \quad x_1 \leq 3 \\
& \quad x_1 \geq 0, \ x_2 \geq 0.
\end{align*}
\]

3. (20 pts) Consider the following model of a linear, discrete, time-invariant system,
\[x_{k+1} = Ax_k + Bu_k, \quad 0 \leq k \leq N - 1, \]
with a specified initial condition \(x_0 \) and a specified final state \(x_N = x_f \), where \(A \in \mathbb{R}^{n \times n} \), \(B \in \mathbb{R}^{n \times m} \), and \(N \geq n \). We assume that the pair \((A, B)\) is reachable. Use the Lagrange multiplier approach to calculate the optimal control sequence
\[\{u_0, u_1, \ldots, u_{N-1}\} \]
that transfers \(x_0 \) to \(x_f \) while minimizing the quadratic performance index
\[J_N = \frac{1}{2} \sum_{k=0}^{N-1} u_k^T R u_k, \]

\text{Write in Exam Book Only}
where \(R = R^T > 0 \).

Hint: Define the composite input vector

\[
 u = \begin{bmatrix} u_0^T & u_1^T & \cdots & u_{N-1}^T \end{bmatrix}^T
\]

and the symmetric block-diagonal positive-definite matrix

\[
 L = \begin{bmatrix}
 R & O & \cdots & O \\
 O & R & \cdots & O \\
 \vdots & \ddots & \ddots & \vdots \\
 O & O & \cdots & R
 \end{bmatrix}
\]

It is then easy to verify that the performance index \(J_N \) can be represented as

\[
 J_N = \frac{1}{2} u^T L u.
\]

Next, write the plant model in the form

\[
 M u = f
\]

for some matrix \(M \) and a vector \(f \).

(i) **(5 pts)** Give expressions for \(M \) and \(f \). Note that the expression for \(f \) is in terms of \(x_f \) and \(x_0 \).

(ii) **(5 pts)** Represent the problem of optimal transfer of the system from the initial state \(x_0 \) to the final state \(x_f \) as a constrained optimization problem.

(iii) **(10 pts)** Obtain a closed-form expression for \(u \).

4. **(20 pts)** Consider a square matrix \(Q \) partitioned as follows:

\[
 Q = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix},
\]

where \(Q_{11} \) and \(Q_{22} \) are square submatrices. If \(Q_{11} \) is nonsingular, then we can write

\[
 \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} = \begin{bmatrix} I & O \\ Q_{21} & I \\ Q_{21} Q_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} Q_{11} & O \\ O & \Delta \end{bmatrix} \begin{bmatrix} I & O_{12} \\ O & I \end{bmatrix},
\]
where $\Delta = Q_{22} - Q_{21} Q_{11}^{-1} Q_{12}$ is called the Schur complement of Q_{11}. Suppose now that Q is symmetric, that is, $Q = Q^T$.

(i) (10 pts.) Formulate necessary and sufficient conditions for Q to be positive definite in terms of Q_{11}, Q_{12}, and Q_{22};

(ii) (10 pts.) Assume that Q_{22} is nonsingular. Find an expression for the Schur complement of Q_{22}.

5. (20 pts) Given a monotone non-decreasing function g of single variable, that is, $g(r_1) \leq g(r_2)$ for $r_1 < r_2$. The function g is also convex. Let f be a convex function on a convex set $\Omega \subseteq \mathbb{R}^n$. Show that the composite function $g(f(x))$ is convex on Ω.

Write in Exam Book Only