Two electromagnetic plane waves propagate through vacuum in directions defined by \(\mathbf{k}_1 \) and \(\mathbf{k}_2 \) as shown, where \(\mathbf{k}_i = \frac{2\pi}{\lambda} (-\sin \theta_i \hat{x} + \cos \theta_i \hat{z}) \) for \(i = 1, 2 \). For each, the electric wave can be expressed as \(\mathbf{E}_i = \mathbf{E}_{i,0} e^{-j(\mathbf{k}_i \cdot \mathbf{r} - \omega t)} \).

A) **(26 points)** For \(\omega_1 = \omega_2 \), determine the distance \(\Lambda \) between the time-averaged power density maxima in the plane defined by \(z = 0 \). Express your result in terms of \(\lambda = \frac{2\pi}{|\mathbf{k}|}, \theta_1 \) and \(\theta_2 \). Determine \(\Lambda \) for \(\lambda = 1.0 \ \mu m, \theta_1 = 0.01 \ \text{rad} \) and \(\theta_2 = -0.01 \ \text{rad} \).

B) **(27 points)** Now let \(\omega_1 \) and \(\omega_2 \) be similar to, but slightly different from one another (i.e., \(|\omega_1 - \omega_2| \ll \omega_1, \omega_2 \)), and let \(\theta_1 = -\theta_2 \). Determine the velocity \(v \) of the time-averaged power density peaks in the \(z = 0 \) plane in terms of \(\lambda, \theta_1, \theta_2 \), and \(\Delta \omega = \omega_1 - \omega_2 \). Estimate \(v \) for \(\lambda = 1.0 \ \mu m, \theta_1 = -\theta_2 = 0.01 \ \text{rad} \) and \(\Delta \omega = 2\pi \times 10^7 \ \text{rad}/\text{sec} \).

C) **(27 points)** Consider the two waves of frequency \(\omega_1 \) and \(\omega_2 \) (again with \(|\omega_1 - \omega_2| \ll \omega_1, \omega_2 \)) as they propagate collinearly (\(\theta_1 = \theta_2 = 0 \)) through a dispersive, non-absorbing, isotropic, non-magnetic medium. The relative permittivity of the medium is given by

\[
\varepsilon'_r(\omega) = \varepsilon'_r(\omega_0) + \varepsilon''_r(\omega_0)(\omega - \omega_0) + \ldots,
\]

where \(\varepsilon'_r(\omega_0) = \left. \frac{d\varepsilon'_r(\omega)}{d\omega} \right|_{\omega=\omega_0} \) and \(\omega_0 \) is the average frequency given by \(\omega_0 = \frac{(\omega_1 + \omega_2)}{2} \). Derive an expression for the velocity of the time-averaged power density peak of this waveform, travelling in the +z direction. Your answer should be in terms of \(\omega_0, c = (\varepsilon_0 \mu_0)^{-1/2}, \varepsilon'_r(\omega_0) \) and \(\varepsilon''_r(\omega_0) \). Estimate this velocity for \(\lambda_0 = 1.0 \ \mu m \) (wavelength in free space), \(\varepsilon'_r(\omega_0) = 2, \varepsilon''_r(\omega_0) = \frac{10^{-11}}{2\pi} \ \text{rad/sec}^{-1} \) and \(\Delta \omega = 2\pi \times 10^7 \ \text{rad/sec} \).
D) (20 points) Finally, we consider a large number \(N \) of plane waves, each propagating through vacuum (impedance \(\eta \approx 377 \, \Omega \)) at an angle \(\theta_n = n\Delta \theta \) with respect to the \(z \) axis, where \(n \) is an integer between \(-\frac{N}{2} \) and \(+\frac{N}{2} \). Let \(N\Delta \theta \ll 1 \).

\[
E_n = E_0 e^{-j(k_n \hat{r} - \omega_0 t)}
\]

\[
k_n = \frac{2\pi}{\lambda} (-\sin \theta_n \hat{x} + \cos \theta_n \hat{z}).
\]

The amplitude \(E_0 \) and frequency \(\omega_0 \) are the same for all waves.

a) What is the peak time-averaged power density in the \(z = 0 \) plane in terms of \(N \), \(E_0 \) and \(\eta \)?

b) Show that the distance from the axis to the first zero of the time-averaged power density is \(x_o = \frac{\lambda}{N\Delta \theta} \).

c) Find the distance \(x_m \) from the axis to the next time-averaged power density maximum.

d) What is the time-averaged power density of the peak at \(x = x_m \) relative to that of the central peak?

[Hint: Represent the sum of these waves using a phasor diagram. The magnitude of each individual phasor is \(E_0 \) and the phase difference between phasors is \(\delta \). Express \(\delta \) as a function of \(x \). As \(N \) gets large, the phasor sum representing the total field is the arc of a circle. Draw this phasor diagram for the field at the central peak. Repeat for the field at the first zero, and the next maximum.]

Write in Exam Book Only
Maxwell’s Equations:
\[\nabla \cdot D = \rho_v \]
\[\nabla \cdot B = 0 \]
\[\nabla \times E = -\frac{\partial B}{\partial t} \]
\[\nabla \times H = J + \frac{\partial D}{\partial t} \]
\[\oint_S D \cdot dS = Q_{enc} \]
\[\oint_S B \cdot dS = 0 \]
\[\oint_c E \cdot dl = -\frac{d}{dt} \oint_S B \cdot dS \]
\[\oint_c H \cdot dl = I_{enc} + \frac{d}{dt} \oint_S D \cdot dS \]

Poynting’s Theorem:
\[\nabla \cdot (E \times H) = -\frac{\partial}{\partial t} (B \cdot H) - \frac{\partial}{\partial t} (D \cdot E) - J \cdot E \]

Potentially Useful Vector Algebra
\[\nabla \cdot A = \hat{x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \]
\[\nabla \cdot A = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} \]
\[\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \]

Potentially Useful Integral Identities
\[\int \frac{dx}{x} = \ln x \]
\[\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left(x + \sqrt{x^2 + a^2} \right) \]
\[\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} \]
\[\int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{x}{a^2 \sqrt{x^2 + a^2}} \]
\[\int \sin^2 x dx = x - \frac{1}{4} \sin 2x \]
\[\int \sin^3 x dx = \frac{\cos^3 x}{3} - \cos x \]
\[\int \sinh^2 x dx = \frac{1}{2} [-x + \sinh x \cosh x] \]
\[\int \cosh^2 x dx = \frac{1}{2} [x + \sinh x \cosh x] \]

Other Information
\[\nu_g = \frac{d\omega}{dk}, \quad k = \omega \sqrt{\mu \varepsilon} \]