1. (25 Points) Let \(X, Y \) and \(Z \) be three jointly distributed random variables with joint pdf
\[
f_{XYZ}(x, y, z) = \frac{3z^2}{7\sqrt{2\pi}} e^{-zy} \exp \left[-\frac{1}{2} \left(\frac{x - y}{z} \right)^2 \right] \cdot 1_{[0, \infty)}(y) \cdot 1_{[1, 2]}(z).
\]
(a) Find the joint probability density function \(f_{YZ}(y, z) \).
(b) Find the conditional probability density function \(f_X(x|y, z) \).
(c) Find the probability density function \(f_Z(z) \).
(d) Find the conditional probability density function \(f_Y(y|z) \).
(e) Find the conditional probability density function \(f_{XY}(x, y|z) \).

2. (25 Points) Show that if a continuous-time Gaussian random process \(X(t) \) is wide-sense stationary, it is also strict-sense stationary.

3. (25 Points) Show that the sum of two jointly distributed Gaussian random variables that are not necessarily statistically independent is a Gaussian random variable.

4. (25 Points) Assume that \(X(t) \) is a zero-mean continuous-time Gaussian white noise process with autocorrelation function
\[
R_{XX}(t_1, t_2) = \delta(t_1 - t_2).
\]
Let \(Y(t) \) be a new random process obtained by passing \(X(t) \) through a linear time-invariant system with impulse response \(h(t) \) whose Fourier transform \(H(\omega) \) has the ideal low-pass characteristic
\[
H(\omega) = \begin{cases} 1, & \text{for } |\omega| \leq \Omega, \\ 0, & \text{elsewhere,} \end{cases}
\]
where \(\Omega > 0 \).
(a) Find the mean of \(Y(t) \).
(b) Find the autocorrelation function of \(Y(t) \).
(c) Find the joint pdf of \(Y(t_1) \) and \(Y(t_2) \) for any two arbitrary sample times \(t_1 \) and \(t_2 \).
(d) what is the minimum time difference \(t_1 - t_2 \) such that \(Y(t_1) \) and \(Y(t_2) \) are statistically independent?

Write in Exam Book Only