Problem 1 [30 points]

(a) [15 points] Consider the active LPF shown below. Assume the OP-amp is ideal [$A_v=\infty$, $Z_{in}=\infty$, and $Z_{out}=0$]. The target 3dB bandwidth and the pass band gain of the LPF are $5\cdot10^6$ [rad/sec] and 20dB, respectively. Calculate R_1 and R_2 values.

![LPF Circuit Diagram]

C$_1$ = 1 pF

(b) [15 points] Now assume the OP-amp has non-ideal gain and input impedance [$A_v\neq\infty$, $Z_{in}\neq\infty$, and $Z_{out}=0$] as shown below. Derive its transfer function, H(s), in terms of A_v, C_{in}, R_1, R_2, and C_1. Do not use the numerical values of R_1 and R_2 calculated in (a). [Hint: assume that the voltage on the OP-amp negative input port is v_x, and find the relation between v_x and v_{out}.]
Problem 2 [35 points] Consider the fully differential amplifier shown below. Assume the input signal is symmetric and all transistors are in saturation. Assume $C_C = \infty$, and $R_f << r_o$.

![Fully Differential Amplifier Diagram](image)

The differential input to the differential output transfer function, $H(s)$, has three poles (one pole per each node approach). Derive the expressions for the low-frequency gain ($A_{\delta I}$) [11 points], and the three poles (ω_{p1}, ω_{p2}, and ω_{p3}) [24 points]. Include r_o, C_{gs}, C_{ds}, C_{sb}, and C_{gd}. Ignore C_{gds} and C_{gqs}. Use r_o, C_{gs}, C_{ds}, and C_{sb} where x is the number of each transistor. **The order of the three poles is not important.**

![Magnitude of Transfer Function](image)

Write in Exam Book Only
Problem 3 [35 points] Calculate the "low-frequency" voltage gain (V_o/V_{in}) of the amplifier shown below. Ignore the body effect and channel length modulation ($r_o=\infty$). Assume all transistors are in saturation, and $g_m = g_{m1} = g_{m2} = g_{m3} = g_{m4}$. Assume $R_S << r_o$.

g_{m1}: transconductance of M1
g_{m2}: transconductance of M2
g_{m3}: transconductance of M3
g_{m4}: transconductance of M4

Assume $g_m = g_{m1} = g_{m2} = g_{m3} = g_{m4}$. Assume $R_S << r_o$.

Write in Exam Book Only