In the figure above, transistor M1 has the following parameters: \(k_N = \frac{\mu_N \varepsilon_{ox}}{t_{ox}} = 4 \text{mA/V}^2 \), \(V_{in} = 1 \text{V} \) and \(V_{DD} = 5 \text{V} \). \(V_{in} \) represents the transistor threshold voltage, \(t_{ox} \) is the gate oxide thickness of SiO\(_2\), \(\varepsilon_{ox} \) is the permittivity of SiO\(_2\), and \(\mu_n \) is the mobility of electrons.

(a) If \(W/L \) is the width-to-length ratio of M1 and \(R \) is the resistance of the resistive load, then find the ratio \(\frac{R}{W/L} \) so that \(V_{OL} \) of the inverter is equal to 1V. Please clearly state all assumptions. (\(V_{OL} \) represents the output low voltage of the inverter.) (30 points)

(b) What is \(V_{OH} \) of the inverter? Please explain your results. (Note: \(V_{OH} \) is the output high voltage for the inverter) (10 points)
Question 2:

Consider an inverter of minimum size (input capacitance of Ci) driving a load Cl, which is x times as large as Ci (Cl = x.Ci). The size of the PMOS transistor is a times larger than the NMOS transistor. You decide to introduce another inverter (u times larger than the first) between the minimum sized inverter and the load Cl. What should u be to minimize the delay? When does it make sense to introduce this inverter? Clearly state all assumptions. (30 points)
Question 3:

Consider the following circuit driving a load capacitance of C_L. The transistors have a threshold voltage of $|V_t| = |V_{tn}| = |V_{tp}|$. If there is a low to high input transition as shown in the figure, determine the energy dissipation. Assume that $V_{out} = 0$ to start with. (30 points)