In his seminal paper published in Annalen der Physik in 1907 (vol. 23, p. 846 - 866), J. Zenneck was the first to analyze a solution of Maxwell's equations that had a “surface wave” property. This so-called Zenneck wave is simply a wave solution to Maxwell's equations in the presence of a planar boundary that separates free space from a half space with a finite conductivity. The amplitude of this wave decays exponentially in the directions perpendicular to the boundary (with differing decay constants “above” and “below” the surface - see Fig. 2). Surface plasmons that propagate along a metal-dielectric interface and hold the promise of the emerging field of “plasmonics” to revolutionize modern optoelectronics, represent a special case of the Zenneck wave.

Figure 1: Jonathan A. W. Zenneck (April 15, 1871 - April 8, 1959)

Problem 1. 35 points
Treating the electromagnetic response of the metal as arising primarily from free electrons with effective mass m_{eff} and density (i.e., number of electrons per unit volume) n, and neglecting their scattering, determine the frequency range where the plasmon can exist. Assume that the permittivity of the dielectric medium above the metal (see Fig. 2) ε_d is also known.

Problem 2. 35 points
Under the assumptions of Problem 1, calculate
(i) the electromagnetic field of the surface plasmon wave $\{E(x, y, z; t), B(x, y, z; t)\}$ at frequency ω.
(ii) its wavenumber k as a function of frequency. Calculate the corresponding functional dependence, and plot it in ω vs. k coordinates.

Figure 2:
Problem 3. 10 points
Explain (qualitatively) how the result of Problem 2 would change when electron scattering is taken into account.

Problem 4. 20 points
Assuming the electron scattering time τ is known, calculate the propagation distance of the plasmon as a function of frequency. (You can define it as the distance corresponding to the decrease of the plasmon field by $1/e$). Assume that ϵ_d, m_{eff}, and n are known.